GUÍAS ERC 2025

GUÍAS ERC 2025 EDUCACIÓN PARA LA RESUCITACIÓN

TRADUCCIÓN OFICIAL AL CASTELLANO

Revisores: Bernadino Santos M, Carmona Jiménez F.

Agradecimientos: A Robert "Tino" Greif.

This publication is a translation of the original ERC Guidelines 2025 Executive Summary. The translation is made by and under supervision of the AESP-RCP, solely responsible for its contents. If any questions arise related to the accuracy of the information contained in the translation, please refer to the English version of the manual which is the official version of the document. Any discrepancies or differences created in the translation are not binding to the European Resuscitation Council and have no legal effect for compliance or enforcement purposes.

Guías del Consejo Europeo de Resucitación 2025 Educación para la Resucitación

Sabine Nabecker ^{a,1,**}, Timo de Raad ^{b, 1}, Cristian Abelairas-Gomez ^{c,d}, Jan Breckwoldt ^e, Olfa Chakroun-Walha ^{f,g}, Barbara Farquharson ^h, Silvija Hunyadi-Antičević ⁱ, Carsten Lott ^j, Sebastian Schnaubelt ^{k,l,m}, Joyce Yeung ^{n,o}, Andrew Lockey ^{p,q,2}, Robert Greif ^{r,2}, para los Colaboradores de Educación para la resucitación de ERC

¹ Estos autores contribuyeron igualmente como primeros autores.

² Estos autores contribuyeron de manera equitativa como autores principales.

^{*} Autor de correspondencia: Sabine Nabecker; Dirección de correo electrónico: sabine.nabecker@sinaihealth.ca

Resumen

Estas Guías de Resucitación 2025 del European Resuscitation Council (ERC) sobre Educación para la Resucitación se basan en el "Consenso sobre Ciencia de la RCP y Recomendaciones de Tratamiento" (CoSTR) 2025 del *International Liaison Committee on Resuscitation* (ILCOR), revisiones de literatura revisada por pares y consenso de expertos. Estas guías ofrecen recomendaciones para legos y personal sanitario sobre la enseñanza y el aprendizaje de las competencias (conocimientos, habilidades y actitudes) para la resucitación en casos de parada cardiaca intrahospitalaria y pararda cardiaca extrahospitalaria en todos los grupos de edad. Además, estas guías se centran en el aprendizaje mejorado con la tecnología, la educación en resucitación basada en la simulación, la evaluación, el *feedback* y el *debriefing*, el desarrollo del profesorado y los efectos educativos en el pronóstico de los pacientes.

Palabras clave: educación, formación, aprendizaje, resucitación cardiopulmonar, simulación, guías, ERC

Abreviaturas

ERC, European Resuscitation Council (Consejo Europeo de Resucitación)

CoSTR, Consenso sobre Ciencia de la RCP y Recomendaciones de Tratamiento

ILCOR, International Liaison Committee on Resuscitation (ILCOR)

Profesionales sanitarios

IA, Inteligencia Artificial

RCP, resucitación cardiopulmonar

SVB, Soporte Vital Básico

DEA, desfibrilador externo automático

SVA, Soporte Vital Avanzado

SVI, Soporte Vital Inmediato

SVBP, Soporte Vital Básico Pediátrico

SVR, Soporte Vital Neonatal

RV, realidad virtual

RA, realidad aumentada

EVA, entorno virtual de aprendizaje

EMS, Sistemas de Emergencias Médicas

HBB, Helping Babies Breathe (Ayudando a los bebés a respirar)

PAD, Desfibrilador de acceso público

ECA, Ensayo controlado aleatorizado

Introducción

Estas Guías de Educación para la Resucitación del European Resuscitation Council (ERC) 2025 ofrecen información basada en la evidencia para laicos y sanitarios sobre la enseñanza y el aprendizaje de las competencias para salvar vidas durante la resucitación (conocimientos, habilidades y actitudes) con el objetivo de mejorar el pronóstico de los pacientes (Fig. 1). Esta guía aborda el segundo componente clave de la fórmula del aumento de supervivencia de Utstein, a saber, la 'eficiencia educativa' (Fig. 2). Dado que la educación es el vínculo entre los hallazgos científicos y su implementación en la práctica, presentamos los componentes de la educación en resucitación con más detalle. Los efectos de las intervenciones educativas en la resucitación se maximizan al incorporar la teoría educativa. Estas guías abordan la educación en diversos entornos donde las personas pueden enseñar y aprender resucitación, incluyendo todos los niveles desde el soporte vital básico hasta el soporte vital avanzado, y para todas las edades de los alumnos y todas las víctimas de parada cardiaca. Los principales interesados a los que se deben dirigir incluyen a las autoridades gubernamentales (salud, educación, etc.) y políticas que gestionan los sistemas de salud nacionales y/o regionales.

EDUCACIÓN PARA LA RESUCITACIÓNMENSAJES CLAVE



Fig. 1. Ética para la resucitación – mensajes clave

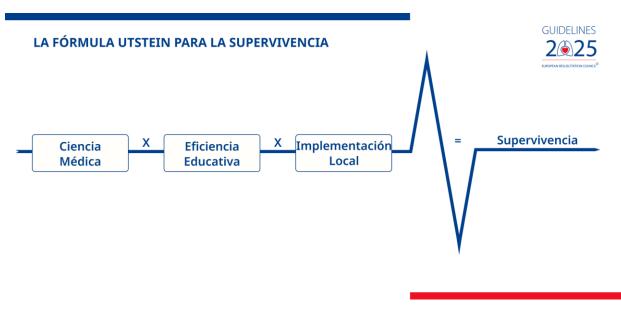


Figura 2: La fórmula de supervivencia de Utstein

Los principios fundamentales de la educación médica sirven como esquema para crear una estructura educativa integral. Este marco incorpora diversas teorías de aprendizaje y estrategias de enseñanza para ofrecer una gama más amplia de métodos en la educación en resucitación con DEA. Durante la última década, la simulación y la tecnología (y más recientemente la inteligencia artificial (IA)) han adquirido una importancia creciente en la educación y han transformado la manera en que ERC implementa su enseñanza en resucitación.³ En la Fig. 3 se presenta un resumen de las estrategias educativas clave mencionadas en estas guías.

GUIDELINES 2 2 5

Figura 3: Enfoque educativo del ERC para unas mejores prácticas y la mejora del pronóstico de los pacientes.

A lo largo de estas guías, el término RCP se refiere a las habilidades técnicas específicas de la resucitación cardiopulmonar (por ejemplo, métricas de rendimiento de compresiones torácicas y ventilación), mientras que resucitación se utiliza como un término genérico que abarca un abanico más amplio de habilidades e intervenciones. El término testigo se utiliza para describir a los reanimadores que se encuentran en el lugar para proporcionar ayuda, y el término primer respondiente se utiliza para aquellos que tienen entrenamiento adicional y son alertados para asistir a la escena de una parada cardiaca. Los profesionales sanitarios (HCPs) son aquellos que trabajan en cualquier sector de la salud (prehospitalario o intrahospitalario). Los legos son personas que no trabajan en el sector de la salud. El soporte vital básico (SVB) se define como iniciar la cadena de la supervivencia, compresiones torácicas de calidad tempranas, ventilación efectiva y el uso precoz de un desfibrilador externo automático (DEA). Cualquier forma de educación en resucitación más allá del SVB se describe genéricamente como soporte vital avanzado (soporte vital neonatal, pediátrico y del adulto). Donde se utiliza el término 'SVA', se refiere específicamente al curso de Soporte Vital Avanzado para adultos del ERC. El grupo de redacción de estas Guías ERC 2025 Educación para la Resucitación consideró el enfoque

recientemente introducido por el ERC sobre diversidad, igualdad, equidad e inclusión (DEI) al redactar estas guías, y lo aplicó siempre que fue posible, reconociendo y comprendiendo que este es un campo para mejorar en la producción de guías basadas en la evidencia.

Estas Guías ERC sobre Educación para la Resucitación 2025 se basan en el Consenso Anual de Ciencia con Recomendaciones de Tratamiento (CoSTR) del International Liaison Committee on Resuscitation (ILCOR).⁴⁻⁷ Se convocó a un grupo de expertos para revisar estas recomendaciones, junto con la literatura publicada disponible revisada por pares. Esta evidencia fue luego discutida y acordada dentro del Grupo de Redacción de Educación y el Comité Directivo de las Guías ERC 2025. Los presidentes de los comités de ciencia y educación del ERC correspondiente revisaron y acordaron las partes relacionadas con el formato específico de su curso. Estas Guías se publicaron para comentarios públicos entre el 5 y el 30 de mayo de 2025. Se enviaron un total de 53 comentarios que modificaron la versión final. Posteriormente, el grupo de redacción revisó los comentarios y actualizó las guías. Estas Guías fueron presentadas y aprobadas por la Junta directiva del ERC y la Asamblea General del ERC en junio de 2025. La metodología para el desarrollo de las guías se describe en el Resumen Ejecutivo.⁸ La Tabla 1 sintetiza los cambios principales en las Guías ERC para la Educación en Resucitación entre 2021 y 2025 (Tabla 1).

Tema	s ERC para la Educación en Resu Guías 2021	Guías 2025
Educación en resucitación adaptada para grupos específicos de rescatadores que salvan vidas	No incluido	 Introducir la formación en resucitación desditemprana edad en la educación infantil (alrededor do los 4-6 años) e incorporar la formación anual e resucitación en los planes de estudio escolares. Adaptar la formación requerida en RCP al rol do proveedor, su entorno específico y las poblaciones de pacientes específicas. Capacitar a los operadores telefónicos de lo Sistemas de Emergencias Médicas en
	No in abrida	reconocimiento de la parada cardiaca y la orientació de RCP asistida por teléfono.
Métodos educativos para enseñar competencias en resucitación de gran calidad	No incluido	 Utilice el aprendizaje combinado y autodirigido par proporcionar flexibilidad y accesibilidad a todos lo alumnos de cursos de resucitación.
		 Considere el aprendizaje "gamificado" como u componente del entrenamiento de resucitación par todos los tipos de cursos de soporte vital básico soporte vital avanzado, incluyendo el uso de DEA. Utilice dispositivos de feedback en tiempo real d RCP para mejorar la adquisición de habilidades y la compresiones torácicas de calidad.
		- Utiliza la Práctica Deliberada de Ciclo Rápido com una estrategia de aprendizaje efectiva para domin- rápidamente las habilidades en todos los tipos o cursos de soporte vital básico y soporte vita avanzado.
		- Utilice enfoques metódicos para la adquisició estructurada de habilidades, pero no siempre e necesario seguir estrictamente un enfoque de cuati pasos.
		- Los profesionales de la salud deben utilizar ayuda cognitivas para mejorar la adherencia a la protocolos durante la resucitación, pero los testigo deben abstenerse de usarlas, ya que esto podr retrasar acciones crítica
		- Integrar la ética en la educación en resucitación o los profesionales de la salud.
		- Incluir el entrenamiento de las competencias d trabajo en equipo en todos los cursos de soporte vit (incluyendo habilidades no técnicas y factor humar durante la resucitación).
Aprendizaje mejorado por tecnología (TEL) para la resucitación	 Aprender RCP puede recibir soporte mediante el uso de teléfonos inteligentes, tabletas, etc. Mejoran la retención y facilitan la evaluación de competencias en RCP. El aprendizaje "gamificado" puede involucrar a muchos alumnos. 	- Utilice modalidades de aprendizaje en línea (p ejemplo, podcasts, videos, redes sociales) pa ofrecer flexibilidad en el tiempo y el lugar a la alumnos y para promover el aprendizaje asincrónio La realidad aumentada para el entrenamiento e soporte vital posiblemente añade valor al proceso d aprendizaje.
		- Las aplicaciones y la inteligencia artificial podría facilitar la evaluación y la enseñanza durante le cursos de resucitación.

	 Se recomiendan los entornos de aprendizaje virtual como parte de un enfoque de aprendizaje combinado. 	
Educación en resucitación basada en simulación	- Se debe incluir entrenamiento de equipos y liderazgo en la simulación de soporte vital avanzado.	 El aprendizaje in situ (en el lugar de trabajo) debe considerarse como una opción para la simulación de RCP cuando los recursos están fácilmente disponibles. Considere la inclusión de un entrenador de RCP como miembro del equipo de resucitación durante la simulación de RCP con DEA.
		- Los guiones proporcionan soporte a los instructores durante el <i>debriefing</i> después de la simulación.
Desarrollo del profesorado	- Tres aspectos del desarrollo del profesorado son importantes: la selección de instructores adecuados, la formación inicial de los instructores y el mantenimiento y actualización regular de la calidad de su enseñanza.	 El ERC recomienda programas de desarrollo para el profesorado a todos los instructores que imparten cursos de soporte vital. Seleccione formadores con experiencia en educación médica para llevar a cabo programas de desarrollo docente.
Feedback y debriefing en los cursos de soporte vital	No incluido	- Un informe conciso del equipo después de un entrenamiento de parada cardiaca para los profesionales de la salud puede fomentar informes clínicos rutinarios después de reanimaciones en la vida real.
Educación en resucitación en entornos con recursos limitados y áreas remotas.	No incluido	- Adaptar los enfoques y materiales educativos, así como las campañas de concienciación, al contexto y los recursos disponibles en entornos con recursos limitados.
		 Considere el aprendizaje a distancia, el aprendizaje mejorado con tecnología, el entrenamiento híbrido en resucitación y el uso de maniquíes de bajo coste (hechos por uno mismo).

Guías concisas para la práctica clínica

Educación en resucitación adaptada para grupos específicos de rescatadores que salvan vidas

- Educar a todos los miembros de la comunidad sobre la concienciación de la parada cardiaca y el tratamiento de la parada cardiaca, considerando la diversidad del grupo objetivo.
- Introducir el entrenamiento en resucitación de forma temprana comenzando en la educación infantil (alrededor de 4 a 6 años de edad) e incorporar el entrenamiento anual en resucitación en los planes de estudio escolares.
- Proporcionar a todos los profesionales de la salud formación acreditada en resucitación.
- Adapte la formación requerida en RCP al rol del proveedor, su entorno específico y/o poblaciones de pacientes específicas.
- Capacitar a los operadores de servicios de emergencia en el reconocimiento de la parada cardiaca y en la guía de RCP asistida por teléfono.

Métodos educativos para enseñar competencias en resucitación de gran calidad

- Utilice el aprendizaje combinado y autodirigido para proporcionar flexibilidad y accesibilidad a todos los alumnos de cursos de resucitación.
- Considere el aprendizaje "gamificado" como un componente del entrenamiento en resucitación para todo tipo de cursos de soporte vital básico y soporte vital avanzado.
- Utilice dispositivos de *feedback* en tiempo real de RCP para mejorar la adquisición de habilidades y la precisión de las compresiones torácicas.
- Emplea la Práctica Deliberada de Ciclo Rápido como una estrategia de aprendizaje eficaz para dominar habilidades con rapidez.
- Utilice el aprendizaje espaciado en el tiempo para mejorar la adquisición y la retención de competencias.
- Utilice metodología paso a paso para la adquisición estructurada de habilidades. No siempre es necesario seguir estrictamente un enfoque de cuatro pasos.
- Los profesionales de la salud deberían considerar el uso de ayudas cognitivas durante el entrenamiento en resucitación para mejorar la adherencia a los protocolos. Los testigos no deberían usarlos, ya que esto podría retrasar acciones críticas.

- Integrar la formación ética en la educación en resucitación para profesionales de la salud.
- Independientemente de los antecedentes del rescatador, la educación en soporte vital básico debe incluir compresiones torácicas efectivas, el uso seguro de un DEA y la ventilación de los pulmones.
- Enseñar la ventilación con dos personas al utilizar una bolsa autoinflable y una mascarilla.
- Abordar en el entrenamiento de SVB las barreras que los reanimadores podrían experimentar al realizar RCP y los factores que aumentan la disposición de los reanimadores para realizar RCP.
- Incluir la formación de competencias del equipo en todos los cursos de soporte vital (incluyendo habilidades no técnicas y factores humanos durante la resucitación).

Aprendizaje mejorado por tecnología (TEL) para la resucitación

- Utilice modalidades de aprendizaje en línea (como podcasts, videos, redes sociales) para ofrecer flexibilidad en el tiempo y el lugar a los alumnos y para fomentar el aprendizaje asincrónico.
- Utilice la realidad aumentada para el entrenamiento en soporte vital, ya que posiblemente añade valor al proceso de aprendizaje.
- Considere las aplicaciones y la inteligencia artificial, que podrían facilitar la evaluación y la enseñanza durante los cursos de resucitación.

Educación en resucitación basada en simulación

- Utilice maniquíes de alta fidelidad cuando los centros/organizaciones de formación dispongan de la infraestructura, el personal capacitado y los recursos necesarios. Utilice maniquíes de baja fidelidad para el entrenamiento estándar de soporte vital avanzado donde no estén disponibles maniquíes de alta fidelidad.
- Utilice la simulación in situ (en el lugar de trabajo) como una opción para el entrenamiento de RCP donde los recursos están fácilmente disponibles.
- Incluir la enseñanza de habilidades de trabajo en equipo en simulaciones de soporte vital básico y soporte vital avanzado.
- Considere la inclusión de un entrenador de RCP como miembro del equipo de resucitación durante la simulación de RCP.
- Utilice guiones de *feedback* para proporcionar ayuda a los instructores durante el *feedback* después de la simulación.

Evaluación de la educación en resucitación

- Utilice evaluaciones formativas frecuentes en todos los cursos de soporte vital para proporcionar a los instructores información para el feedback específica y para apoyar el aprendizaje.
- Utilice listas de verificación como ayuda para las decisiones de evaluación.

Feedback y debriefing en los cursos de soporte vital

- Asegúrese de que el feedback sea una conversación bidireccional entre el emisor y el receptor, motivada por un interés genuino en la mejora del alumno.
- Considere utilizar una sesión de debriefing conciso del equipo después del entrenamiento de la situación de parada cardiaca para los profesionales de la salud, con el fin de fomentar sesiones de debriefing clínico rutinarias después de reanimaciones en la vida real.

Desarrollo del profesorado

- El ERC recomienda programas de desarrollo para todos los instructores que enseñan cursos de soporte vital.
- Seleccione formadores con experiencia en educación médica para realizar programas de desarrollo docente.
- Implementar programas de desarrollo docente que capaciten a los participantes para establecer un clima de aprendizaje positivo, ejercer un liderazgo educativo efectivo, comunicar los objetivos de aprendizaje, implementar estrategias sólidas de evaluación y feedback, y evaluar los programas de los cursos para la mejora continua.

Efecto de la educación en resucitación sobre el pronóstico

- Los profesionales de la salud que proporcionan soporte vital avanzado a adultos deben asistir a un entrenamiento acreditado de soporte vital avanzado para adultos.
- Los profesionales de la salud que proporcionan soporte vital avanzado para recién nacidos y bebés deben asistir a cursos acreditados de entrenamiento en resucitación neonatal (NRT) como el Soporte Vital Neonatal (SVN).

- Para los profesionales de la salud que brindan atención a recién nacidos y bebés en entornos con recursos limitados fuera del hospital, recomendamos la participación en el programa de soporte Helping Babies Breathe (HBB).
- Se recomiendan otros cursos acreditados de soporte vital (por ejemplo, soporte vital pediátrico), aunque hay menos evidencia disponible sobre el efecto en los pronósticos de los pacientes.

Educación en resucitación en entornos con recursos limitados y áreas remotas.

- Adapta los enfoques educativos y los materiales, así como las campañas de concienciación al contexto y a los recursos disponibles.
- Considere el aprendizaje a distancia, el aprendizaje mejorado con tecnología, el entrenamiento híbrido en resucitación y el uso de maniquíes de bajo coste (hechos por uno mismo).

La evidencia que apoya las guías

Educación en resucitación adaptada para grupos específicos de rescatadores que salvan vidas

Se requiere un enfoque sistémico para la educación en resucitación para instruir a todas las personas legas, los primeros respondientes y los profesionales de la salud para proporcionar RCP inmediata y desfibrilación con DEA cuando sea apropiado para la parada cardiaca. Sin embargo, la educación en resucitación, al igual que cualquier otra materia, no es un concepto único y debe adaptarse a las necesidades y situaciones específicas de los alumnos, los grupos de pacientes específicos o los reanimadores. Diferentes escenarios de recursos requieren distintos niveles de programas de formación, los cuales deben ser evaluados en función de su viabilidad y coste.

Los reanimadores, desde personas legas hasta profesionales de la salud, necesitan adquirir diferentes competencias según sus distintos requisitos de formación. Los objetivos de aprendizaje para los legos son la llamada inmediata para pedir ayuda, el reconocimiento precoz de la parada cardiaca (CA) y el inicio precoz y efectivo de la RCP básica. 10-12

Una revisión del ILCOR encontró escasa evidencia sobre cursos o entrenamientos adaptados para poblaciones adultas específicas (por ejemplo, síndrome de Down, discapacidad visual o

auditiva). La individualización implica abordar discapacidades específicas. De acuerdo con el ILCOR, el ERC recomienda que, aunque la evidencia sobre qué grupos necesitan qué adaptaciones es limitada, se debe considerar la individualización cuando sea posible.¹³

Considerando las disparidades existentes entre los participantes de los cursos de resucitación 14,15, la adaptación de la formación debe incluir los materiales del curso y los maniquíes a diferencias como el color de piel, el género o la forma del cuerpo, reflejando la diversidad de la población objetivo. 15,16 Específicamente, los organizadores de cursos e instructores deberían considerar el uso de maniquíes diversos, adaptados por raza, género y/o edad si están disponibles.

Los niños pueden ser entrenados en habilidades de resucitación desde una edad temprana hasta la educación superior, como lo demuestra el exitoso programa *KIDS SAVE LIVES* del ERC.¹⁷ Esta formación en resucitación debe adaptarse a la edad de los alumnos debido a sus diferentes capacidades para realizar las habilidades y comprender la teoría subyacente.¹⁸⁻²⁴ Los docentes ya son expertos en la enseñanza y, por lo tanto, solo necesitan aprender las habilidades específicas de resucitación que posteriormente enseñarán a sus alumnos.^{17,25,26} Dicha enseñanza de resucitación debería incluirse en los planes de estudio de la formación de docentes.²³ La evidencia es escasa sobre cuál estrategia educativa es la más efectiva para enseñar a los niños en edad escolar.²⁷⁻³⁰ Sin embargo, un estudio ha derivado sugerencias para mejorar el contenido y las estrategias de enseñanza desde la perspectiva de los escolares y sus maestros.²⁴ Por lo tanto, el formato para enseñar RCP variará según los requisitos y circunstancias locales. Para más detalles, consulte la Guía ERC 2025 *Sistemas que Salvan Vidas*.³¹

Los operadores de los Sistemas de Emergencias Médicas desempeñan un papel vital al guiar a los testigos mediante RCP asistida por teléfono. Los operadores telefónicos, por lo tanto, deben ser competentes en reconocer un parada cardiaca a partir de la descripción proporcionada por el alertante. Aunque existe un pequeño riesgo de realizar compresiones torácicas en alguien que no está en parada cardiaca, este riesgo es superado con creces por el peligro de no realizar compresiones cuando son necesarias. Los desafíos comunes incluyen reconocer la respiración agónica o gasping y motivar a los alertantes para ayudar a la víctima. Los programas que mejoran la incidencia y calidad de la RCP asistida por teléfono han mejorado los pronósticos de los pacientes, 40,41 y el entrenamiento específico puede superar las barreras y desafíos en la provisión de RCP. La inteligencia artificial puede proporcionar soporte a los operadores telefónicos, pero actualmente no existe suficiente evidencia para recomendar su uso rutinario. Si se crea un curso específico de RCP asistida por teléfono para operadores telefónicos, debería incluir el reconocimiento y la seguridad del parada cardiaca, la interacción

con los alertantes para iniciar la RCP, las indicaciones y la realización de RCP solo con compresiones torácicas, la instrucción en RCP de calidad, incluyendo el uso de un DEA, el soporte de los primeros respondientes que llegan, drones y servicios de emergencia en la escena, y la revisión de la resucitación.^{7,47}

Nabecker et al

Los programas de entrenamiento en resucitación para los profesionales de la salud en distintos niveles de respuesta y responsabilidad deberían ser obligatorios, ya que están en contacto regular con pacientes en riesgo de parada cardiaca. Según el lugar de trabajo, el entrenamiento debe adaptarse al nivel de habilidad requerido, al entorno específico y a la frecuencia anticipada de respuesta a emergencias (por ejemplo, a través de cursos acreditados de entrenamiento en soporte vital al nivel adecuado y para el grupo de edad apropiado), así como a su entorno específico.^{7,48,49}

Métodos educativos para enseñar competencias en resucitación de gran calidad

En cualquier proceso de enseñanza-aprendizaje, el primer paso es definir 'qué enseñar'. Eso implica definir las competencias y los objetivos de aprendizaje necesarios para el público objetivo (por ejemplo, alumnos escolares, socorristas y profesionales de la salud). Una vez que se establecen los objetivos de aprendizaje y el contenido, un proceso educativo bien estructurado define 'cómo *enseñar'*. El último paso en este proceso es la evaluación del éxito de la enseñanza: "¿Ahora eres capaz de hacerlo?".

La educación efectiva necesita recursos humanos (por ejemplo, instructores) y materiales de enseñanza (por ejemplo, aulas de simulación). El papel del instructor es facilitar el aprendizaje en un entorno seguro y motivador, fomentando la participación activa de los alumnos y la evaluación del éxito del aprendizaje en todos los formatos de curso y con todos los alumnos.

Métodos educativos para la resucitación

Integrar la ética en la educación sobre resucitación es esencial para preparar a todos los reanimadores en la aplicación de principios éticos bajo presión. Para los legos, el entrenamiento debe abordar preocupaciones clave como la disposición para ayudar, la vacilación para intervenir y el conocimiento de las leyes del Buen Samaritano que protegen a los testigos que actúan como reanimadores. Los sanitarios deben estar equipados para la planificación anticipada de cuidados, participar en la toma de decisiones compartida centrada en el paciente, aplicar decisiones de no iniciar la resucitación (DNACPR) y tomar decisiones informadas sobre cuándo terminar los esfuerzos de resucitación.

Garantizar el acceso equitativo a la educación en ética reduce la incertidumbre, genera confianza entre los proveedores y fomenta decisiones de resucitación que respetan los derechos de los pacientes y reflejan las mejores prácticas éticas. Para obtener más información, consulte las guías ERC 2025 sobre Ética en la Resucitación.

El aprendizaje combinado^{4,50}, el aprendizaje⁵¹ autodirigido⁵², la "gamificación"⁵³, las^{7,54} ayudas cognitivas y la realidad aumentada fueron evaluados por el ILCOR y se determinó que son efectivos para el entrenamiento en RCP tanto para profesionales de la salud como para legos.

El aprendizaje combinado integra recursos digitales con la enseñanza presencial y la práctica, permitiendo el entrenamiento en resucitación incluso en ubicaciones remotas.^{4,50} También permite una comunicación eficiente, especialmente para la preparación previa al curso.⁵⁰ Aunque su implementación podría enfrentarse a barreras en entornos con recursos limitados, sigue

siendo una estrategia efectiva, que es al menos tan efectiva como el entrenamiento presencial. 4,50,55

El aprendizaje autodirigido, en contraste con el aprendizaje dirigido por el instructor, es particularmente útil y efectivo para técnicas básicas como las compresiones torácicas y el uso del DEA, especialmente en entornos con recursos limitados.⁵¹ La mayoría de los estudios no encontraron diferencias en la calidad de la RCP, el uso del DEA, el conocimiento, la confianza y la disposición para ayudar entre el entrenamiento autodirigido y el dirigida por un instructor^{4,51,56,57}, lo que hace que el aprendizaje autodirigido sea probablemente rentable y recomendable donde el entrenamiento dirigida por un instructor no es factible.

La "gamificación" se refiere al uso de elementos similares a los de los juegos (competencia, sistemas de puntos, niveles de dificultad escalonados, tablas de clasificación), generalmente en un formato digital, para fomentar la participación interactiva e intuitiva de los alumnos.⁵⁸ La "gamificación" para el entrenamiento en RCP mejora el pronóstico de los alumnos (habilidad, conocimiento, actitud) y la participación, especialmente en el trabajo en equipo y la resolución de problemas, y mejora las actitudes de los alumnos durante el entrenamiento, pudiendo ser un componente valioso en la formación en resucitación. ^{7,52,59} Una estrategia de "gamificación" podría incluir narrativas atractivas, desafíos progresivos, feedback inmediato, colaboración y/o recompensas significativas. La mayoría de los estudios mostraron mejoras en al menos un campo del aprendizaje de los alumnos cuando se incluyeron elementos de aprendizaje "gamificado", pero la heterogeneidad en sus aplicaciones resulta en una certeza muy baja de la evidencia que soporta estos hallazgos. 7,52,60-63 Un estudio incluso reportó efectos negativos en la calidad de la RCP y el tiempo para aplicar una descarga efectiva de un DEA.64 Una búsqueda actualizada identificó tres estudios adicionales que son consistentes con los hallazgos anteriores.51 Por lo tanto, el aprendizaje "gamificado" debería considerarse como una herramienta del entrenamiento en resucitación para todos los tipos de cursos de soporte vital básico y soporte vital avanzado con DEA.^{7,52}

Las tecnologías inmersivas, como la realidad virtual (VR) y la realidad aumentada (AR), han mostrado resultados variables en el entrenamiento de habilidades de resucitación.⁵⁴ En general, los estudios encuentran que la RA resulta en resultados de aprendizaje favorables o no encuentra diferencias en comparación con otros métodos de entrenamiento SVB,^{7,54} mientras que los resultados para la RV son mixtos, con algunos estudios que sugieren resultados de aprendizaje inferiores para la RV sola en comparación con otros métodos de entrenamiento.^{7,54,65-71} Por lo tanto, la realidad virtual (VR) y la realidad aumentada (AR) pueden utilizarse para la enseñanza de la reanimación^{7,54}, pero la VR no debería usarse como el único método.

El enfoque de aula invertida invierte el entorno de aprendizaje tradicional.⁷² En lugar de recibir información pasivamente en un aula, los alumnos son primero introducidos al material de aprendizaje de RCP y DEA fuera del aula, a menudo a través de videos en línea, lecturas u otros recursos organizados en un entorno de aprendizaje virtual (VLE). Luego, durante el tiempo del curso de resucitación en el aula presencial, los alumnos participan en actividades de aprendizaje activo durante simulaciones, estudios de casos y práctica, facilitadas por un instructor.

Entrenamiento práctico y feedback

El *feedback* es esencial para asegurar el aprendizaje durante la formación de habilidades de calidad y puede recibirse de diferentes modos El uso de dispositivos de *feedback* en RCP mejora las métricas de calidad de las compresiones torácicas durante el entrenamiento de reanimadores legos y profesionales. ⁷³⁻⁷⁹ Sin embargo, hay evidencia insuficiente para determinar el valor de los dispositivos de *feedback* en ventilación para enseñar habilidades de RCP.

Estrategias de aprendizaje

La Práctica Deliberada de Ciclo Rápido (RCDP) se caracteriza por la posibilidad de pausar el escenario si es necesario para permitir correcciones. El alumno puede entonces repetir la habilidad hasta que la domine. En escenarios simulados de SVA, se reducen significativamente las pausas para la desfibrilación y la administración de medicamentos. Aunque la inclusión de RCDP en los cursos de SVB y SVA parece razonable, su aplicación se ha limitado principalmente a los profesionales de la salud en formación, sin estudios aún en legos, primeros respondientes o en entornos con recursos limitados. Los resultados en la retención de habilidades son mixtos, lo que resalta la necesidad de un análisis más profundo de la efectividad a largo plazo. 7,82

El aprendizaje espaciado en el tiempo distribuye sesiones de entrenamiento más pequeñas o más cortas a lo largo del tiempo, lo que mejora la retención de habilidades prácticas en comparación con el aprendizaje masivo.^{83,84} Dos estudios recientes concluyeron que el aprendizaje espaciado en el tiempo era más efectivo que el aprendizaje masivo para la retención de habilidades de SVB.^{85,86} La frecuencia del aprendizaje espaciado en el tiempo debe adaptarse a las necesidades de los alumnos y de la organización. Sin embargo, la programación óptima de las sesiones de entrenamiento y el momento y la frecuencia de las mismas siguen siendo inciertos.⁸⁷ No obstante, la repetición de las competencias de resucitación, adaptadas a las necesidades de los alumnos, al menos una vez al año parece sensata.^{83,87,88}

La metodología en pasos para enseñar habilidades de RCP implica organizar la enseñanza en fases progresivas que optimizan la adquisición de habilidades básicas y avanzadas.⁸⁹ Aunque la

metodología en pasos para la enseñanza de habilidades se utiliza ampliamente en el entrenamiento en resucitación, no hay evidencia para su recomendación sobre otras metodologías escalonadas.^{6,89} Una revisión de ILCOR examinó específicamente la efectividad de la metodología en cuatro pasos de Peyton para enseñar habilidades de resucitación en comparación con enfoques alternativos, y 14 de 17 estudios no encontraron diferencias en la adquisición o retención de habilidades.⁸⁹ Es razonable limitar la enseñanza por pasos de habilidades a aquellas de complejidad baja o moderada.⁸⁹⁻⁹¹ El ERC, en consonancia con el ILCOR, recomienda que el número y el orden de los pasos se adapten según factores contextuales como el tiempo disponible para la enseñanza (priorizando el tiempo de las prácticas), la complejidad de la habilidad enseñada y la composición del grupo de participantes (por ejemplo, principiantes frente a expertos; legos frente a profesionales de la salud; tamaños de grupo).

Las ayudas cognitivas, como los algoritmos de toma de decisiones y los listados de verificación, incorporados en la resucitación mejoran la adherencia a las pautas y reducen la carga cognitiva durante las emergencias para los profesionales de la salud.⁵³ Por lo tanto, los instructores deben considerar su uso durante el entrenamiento en resucitación. Los testigos no deben usarlos, ya que esto puede retrasar acciones críticas; por lo tanto, su beneficio durante el entrenamiento de testigos sigue siendo incierto.

Objetivos educativos en los cursos de soporte vital básico

La educación en soporte vital básico en cualquier entorno necesita enseñar la entrega efectiva de compresiones torácicas y ventilaciones, así como el uso seguro de los DEA. Las compresiones torácicas pueden enseñarse desde la infancia temprana (4-6 años), pero la efectividad de las compresiones torácicas depende de las habilidades físicas del rescatador. ^{19,20} Debido a su "diseño orientado al usuario", incluso los usuarios no entrenados (incluidos los niños) deberían poder seguir las instrucciones para usar un DEA de manera segura. ⁹² Sin embargo, el entrenamiento en el uso del DEA, incluyendo la seguridad del rescatador, sigue siendo beneficioso. ⁹³⁻⁹⁵

Tradicionalmente, los cursos de SVB enseñan a cada rescatador la ventilación boca a boca/nariz y/o boca a máscarilla. Ventilar es una habilidad importante, especialmente en ciertas situaciones como la parada cardiaca pediátrica, el ahogamiento o la asfixia. En algunos casos, como cuando hay riesgo de infección, la ventilación con bolsa y mascarilla puede ser el método de elección. Sin embargo, dominar esta habilidad puede ser difícil para muchos no profesionales de la salud e incluso para algunos profesionales de la salud, especialmente aquellos que no utilizan la ventilación con bolsa y mascarilla regularmente en la práctica clínica. No obstante, mejorar la

competencia en esta técnica puede resultar en al menos una ventilación parcial de los pulmones, lo cual es preferible a no proporcionar ventilación.

Realizar la ventilación con dos reanimadores, uno sosteniendo la máscarilla con ambas manos (ventilación con mascarilla con dos reanimadores) y el otro apretando la bolsa, puede mejorar el sellado de la mascarilla y aumentar la posibilidad de una oxigenación y ventilación efectivas; por lo tanto, es la técnica recomendada. El Grupo de Educación sugiere enseñar la ventilación con bolsa y mascarilla a los primeros respondientes y a los profesionales de la salud que normalmente proporcionan SVA, especialmente cuando hay riesgo de infección. A diferencia de la ventilación boca a boca, la ventilación con bolsa y mascarilla durante el entrenamiento en un maniguí no conlleva riesgo de infección.

Los cursos de Soporte Vital Básico (SVB) deben incluir orientación sobre la comunicación efectiva con los operadores telefónicos de EMS, centrándose en cómo proporcionar y recibir información precisa para evitar retrasos innecesarios en el inicio de la resucitación. Los primeros intervinientes también deben aprender a realizar una transmisión estructurada de la información y del paciente a los sistemas de emergencias médicas (Sistemas de Emergencias Médicas) o a los profesionales de la salud. 97 Las competencias específicas de SVB que se enseñan deben adaptarse a las necesidades del grupo de alumnos; no existe un enfoque único para todos.

Los cursos de resucitación deben abordar las barreras para realizar RCP a las que los reanimadores podrían enfrentarse. Estos incluyen: factores personales (por ejemplo, barreras emocionales, pánico), factores socioeconómicos (por ejemplo, cuestiones de género⁹⁸, creencias culturales), factores físicos (por ejemplo, capacidad para colocar al paciente en posición horizontal), competencias en RCP (por ejemplo, deficiencias de habilidades, miedo a causar lesiones/hacer algo mal) y problemas de procedimiento (por ejemplo, barreras de comunicación y lenguaje, reconocimiento de parada cardiaca).^{6,14,99} 100

Factores que aumentan las herramientas de los reanimadores para realizar RCP incluyen la formación previa en RCP, los programas de concienciación sobre RCP en la comunidad, los programas de entrenamiento masivo de solo compresiones torácicas y los reanimadores entrenados en RCP con un nivel educativo superior. ^{51,101} La educación en SVB desempeña un papel importante en fomentar una participación más amplia de los reanimadores en programas comunitarios que tienen como objetivo brindar ayuda a personas en situaciones de riesgo vital (por ejemplo, primeros auxilios, sistemas de primeros respondientes, programas públicos de DEA y programas de RCP para escolares). ^{51,102,103}

No hay una duración única para los cursos de SVB que se adapte a todos los alumnos, ya que esto depende de la formación previa en resucitación de los reanimadores, los objetivos de aprendizaje específicos para cada grupo de alumnos y los factores educativos, sociales y

culturales locales. Los ejemplos varían desde sesiones introductorias muy breves de SVB hasta cursos de SVB de 2 horas o más para todo tipo de alumnos. 104-106 Un ejemplo de lo anterior son las sesiones de entrenamiento del ERC que se desarrollaron en la zona de aficionados dentro de la campaña de concienciación del ERC-UEFA durante la Eurocopa de Fútbol de 2024, las cuales tuvieron una duración media de 5 minutos. Los antecedentes teóricos necesarios para el DEA de cualquier tipo se pueden enseñar en línea como parte de un enfoque de aprendizaje combinado, reservando el tiempo de entrenamiento presencial para la práctica práctica.

Objetivos educativos en soporte vital avanzado

El soporte vital básico es una parte integral de cualquier tipo de educación en soporte vital avanzado, pero necesita ser adaptado a los alumnos. Los objetivos específicos de aprendizaje para el soporte vital neonatal, pediátrico y del adulto son el manejo de la vía aérea, la desfibrilación manual, el acceso vascular, un enfoque estructurado para el manejo de pacientes críticos, la aplicación de resucitación avanzada en situaciones y circunstancias especiales, el tratamiento de arritmias peri parada y los cuidados inmediatos posresucitación. El tiempo y el esfuerzo dedicados a enseñar estas competencias deben adaptarse a la profesión y las responsabilidades clínicas de los alumnos. Por esta razón, los cursos del ERC SVI/SVA han implementado un enfoque modular para adaptar los cursos a las necesidades de los participantes. Una parte central de estos cursos son las competencias del trabajo en equipo, que incluyen liderazgo, asignación de tareas, 7,107 comunicación estructurada y transferencia de la información. 108,109 La enseñanza de las competencias del trabajo en equipo debería mejorar la atención al paciente y podría reducir los errores médicos, además de mejorar la seguridad del paciente. 109-111

Aprendizaje mejorado por tecnología (TEL) para la resucitación

El aprendizaje mejorado por la tecnología (TEL) se refiere al uso efectivo de tecnologías educativas para alcanzar objetivos de aprendizaje específicos. Puede facilitar, proporcionar soporte y enriquecer tanto la enseñanza como el aprendizaje, haciendo que la educación en resucitación sea más accesible, atractiva y efectiva. Estas herramientas innovadoras tienen el potencial de transformar de manera rápida y significativa la forma en que se enseña la resucitación. Los dispositivos de *feedback* en tiempo real para compresiones torácicas, ⁷³especialmente aquellos que incorporan elementos de aprendizaje "gamificado", pueden hacer que el entrenamiento sea más ameno y efectivo. Las tecnologías inmersivas, como la realidad aumentada, permiten a los alumnos interactuar con escenarios complejos y realistas en un entorno seguro y controlado. Las estrategias TEL promueven el desarrollo tanto de habilidades

técnicas como de habilidades no técnicas, incluyendo la toma de decisiones, el trabajo en equipo y la conciencia de situación. A pesar de estos avances, continúan existiendo barreras para la aplicación de TEL en la educación en resucitación. Estas incluyen costes del hardware, fiabilidad del software, acceso limitado, reticencia a adoptar nuevas tecnologías y niveles variables de competencia del usuario. 61

El aprendizaje en línea y la inteligencia artificial en la educación en resucitación

Las modalidades de aprendizaje en línea, incluidas los podcasts y las redes sociales, 114 permiten acceder al contenido en cualquier momento y lugar. Esto promueve el aprendizaje asincrónico y fomenta la autonomía del alumno. ^{50,115} El aprendizaje en línea a menudo se integra en estrategias de aprendizaje mixto para mejorar la participación y la transferencia de conocimiento durante el entrenamiento presencial y las prácticas.50 La inteligencia artificial (IA) simula la inteligencia humana, incluyendo el aprendizaje, el razonamiento, la resolución de problemas y la toma de decisiones, a través de reglas, algoritmos y procesamiento de datos. La IA generativa puede asistir en la enseñanza de la resucitación. 77,78 A pesar de la creciente popularidad de la IA, 116 hay muy poca evidencia sobre cómo la IA puede influir en la educación en resucitación. Una revisión de alcance encontró seis aplicaciones de la IA en la educación en resucitación: medir y proporcionar feedback sobre el rendimiento de la RCP, personalizar itinerarios formativos, detectar la comunicación ineficaz, generar imágenes médicas para el entrenamiento en resucitación, crear simulaciones en línea interactivas y adaptativas, y habilitar chatbots impulsados por IA para responder preguntas relacionadas con la resucitación. 117 Se han publicado múltiples herramientas de IA que miden indicadores de éxito en la RCP. 118-122 Algunos de ellas pueden proporcionar feedback directo. 121,123 Otras aplicaciones prometedoras son la creación de itinerarios formativos personalizados y la ayuda en la detección de comunicación resucitación. 118,124,125 durante el entrenamiento verbal ineficaz en En una prueba de la capacidad de un modelo de IA generativa (ChatGPT versión del 14 de marzo de 2023) para proporcionar respuestas precisas y completas a las preguntas de personas no expertas sobre la parada cardiaca y la RCP, los expertos coincidieron en que la IA generativa gran proporcionó respuestas en medida precisas, relevantes completas. ¹²⁶ Sin embargo, aún necesita ser optimizado para su uso en la educación clínica. ¹²⁷

Las preocupaciones sobre el uso de la IA en la educación en resucitación incluyen la necesidad de validación experta del contenido y el material de enseñanza, 128,129 así como cuestiones éticas relacionadas con la privacidad de los datos y el sesgo del algoritmo.

Educación en resucitación basada en simulación

La simulación ha sido un componente clave de la educación en soporte vital durante muchos años. Se basa en que los alumnos aceptan voluntariamente que el escenario sea real, lo que les permite desarrollar habilidades y comportamientos que pueden llevarlos más allá de su zona de confort, facilitando el proceso de aprendizaje. 130-132 Las ventajas se extienden más allá de los individuos a equipos completos, mejorando tanto la adquisión de las habilidades técnicas como las habilidades no técnicas y competencias. 109,133 Al participar en simulaciones, los alumnos pueden reforzar sus experiencias del mundo real, y este enfoque es especialmente eficaz para desarrollar y gestionar el factor humano y las competencias de equipo. Las recomendaciones sobre la simulación para el entrenamiento en RCP se basan en evidencia reciente o actualizada sobre varios aspectos (fidelidad, aprendizaje *in situ*, aprendizaje "gamificado", trabajo en equipo, entrenamiento en RCP y *debriefing* estructurado) que contribuyen a este enfoque. 7,51

Fidelidad

Se han introducido maniquíes de alta fidelidad para promover la implicación de los alumnos al aumentar el realismo. El realismo físico implica la presencia de características físicas, ya sean visibles, palpables y/o audibles, que están diseñadas para aumentar la semejanza del maniquí con un paciente real. 134 Esto permite a los participantes entrenar en un entorno que refleja con mayor precisión un escenario clínico real. 135-137 Una revisión sistemática que compara el uso de maniquíes de alta fidelidad con maniquíes de baja fidelidad para el entrenamiento en SVB y SVA (adultos, pediatría y neonatal) incluyó 21 estudios 51,134. El uso de maniquíes de alta fidelidad favoreció el desempeño de las habilidades al finalizar el curso, los parámetros de RCP al finalizar el curso, y las actitudes y preferencias. Al concluir el curso, no se encontró diferencia entre los dos grupos en cuanto al conocimiento, el tiempo de ejecución de tareas o el trabajo en equipo. Tampoco hubo diferencia en el rendimiento clínico y el conocimiento a los 3 meses o más. En resumen, los maniquíes de alta fidelidad pueden emplearse para el entrenamiento de RCP cuando los centros de formación u organizaciones disponen de la infraestructura, el personal capacitado y los recursos necesarios para mantener el programa. El uso de maniguíes de alta fidelidad mejoró las habilidades después de los cursos de SVA, pero no mostró ventajas sobre los maniquíes de baja fidelidad en la enseñanza de SVB. 134 El mayor coste y mantenimiento de los maniquíes de alta fidelidad limitan su uso en entornos con recursos limitados. Cuando los maniquíes de alta fidelidad no están disponibles, es razonable utilizar maniquíes de baja fidelidad para el entrenamiento estándar de SVA. 134

Aprendizaje in situ

Ofrecer entrenamiento dentro de las áreas de atención al paciente tiene la ventaja teórica de proporcionar aprendizaje en un entorno clínico real y evaluar la estructura organizativa. ¹³⁸ Una revisión sistemática que compara el entrenamiento en RCP basada en simulación *in situ* (en el lugar de trabajo) con el entrenamiento tradicional para los profesionales de la salud incluyó cuatro estudios. ¹³⁹ Un estudio no aleatorizado mostró una asociación entre el entrenamiento *in situ* y mayores probabilidades de supervivencia al alta hospitalaria en niños que sufrieron una parada cardiaca. ¹⁴⁰ Otro estudio no aleatorizado mostró una menor incidencia de complicaciones en los pacientes durante la resucitación de recién nacidos en el período en el que se realizaba el entrenamiento *in situ*. ¹⁴¹ La simulación *in situ* puede considerarse como una opción para la simulación de RCP, ya que podría mejorar la supervivencia del paciente, el rendimiento clínico y las competencias del trabajo en equipo en reanimaciones reales. ¹³⁹ ⁵¹

Competencias del trabajo en equipo

Las competencias del trabajo en equipo pueden definirse como las habilidades no técnicas relacionadas con el trabajo en equipo e incluyen la comunicación eficaz, la definición de objetivos, la transferencia estructurada de información, los comportamientos coordinados, la distribución y asignación de tareas, el modelo mental compartido, la conciencia de situación y la supervisión del desempeño. Fila entrenamiento en resucitación basado en simulación es el ámbito para el entrenamiento de las competencias de trabajo en equipo, y su inclusión ha demostrado mejorar el rendimiento. Aunque los pronósticos varían, su impacto ha sido en gran medida positivo. Una revisión sistemática, que se actualizó recientemente, incluyó un total de 19 estudios con resultados variables, pero principalmente positivos en relación con las competencias del trabajo en equipo. Finor

Tutorización de la RCP durante la simulación de RCP

Un tutor *coach* de RCP es un miembro del equipo de resucitación cuya responsabilidad principal es proporcionar retroalimentación en tiempo real sobre la calidad de la resucitación. Una revisión sistemática que compara el uso de un tutor de RCP con la ausencia de *coach* o tutor en los equipos sanitarios que atienden paradas cardiacas en adultos o pediátricos incluyó siete estudios. ¹⁴³ El desempeño de la RCP tanto en entornos clínicos como de simulación mejoró con el uso de un tutor de RCP. También hubo una mayor adherencia a las guías en un entorno de simulación con DEA. Dado que no se observaron efectos perjudiciales y los tutores de RCP ya están incluidos en los equipos de resucitación en muchos hospitales, es razonable incluirlos en los equipos de atención a la parada cardiaca en entornos con suficiente personal. ¹⁴³ Por lo tanto,

el ERC aconseja considerar la inclusión de la formación de entrenadores de RCP en los cursos de soporte vital.

Debriefing estructurado

Se han desarrollado herramientas de *feedback* estructurado para ayudar a estandarizar el *feedback* durante el entrenamiento en resucitación.¹⁴⁴ Ninguno de los seis estudios incluidos en una reciente revisión mostró resultados sobre el pronóstico de los pacientes o reanimaciones reales con DEA.¹⁴⁵ Sin embargo, una declaración de buenas prácticas apoya el uso de sesiones de *debriefing* estructuradas después de la simulación en resucitación porque pueden mejorar el aprendizaie y el rendimiento.^{7,145}

Evaluación de la educación en resucitación

La evaluación del aprendizaje es fundamental para determinar si se han logrado las competencias establecidas en los objetivos de aprendizaje. Los componentes clave de la evaluación incluyen la observación directa del desempeño, formular preguntas aclaratorias para comprender el razonamiento del alumno y fomentar la autoevaluación, lo cual puede ofrecer valiosas perspectivas para la discusión durante las sesiones de *feedback*. Los resultados de la evaluación pueden documentarse utilizando herramientas digitales avanzadas o listas de verificación en papel tradicionales. Para este propósito, son necesarias herramientas fiables y validadas. Los datos de calidad de RCP registrados objetivamente también pueden proporcionar soporte tanto para la evaluación como para el *feedback* posterior. Esto contribuye a pronósticos de evaluación sólidos y defendibles, asegurando credibilidad para los participantes del curso y para las partes interesadas que requieren certificación.

La perspectiva de un instructor durante la evaluación permite una reflexión crítica sobre las autoevaluaciones de los participantes, que a veces pueden diferir de su desempeño real. Múltiples evaluaciones realizadas a lo largo del tiempo por diferentes evaluadores proporcionan una visión más completa del rendimiento del alumno. Estos pueden emplearse para el *feedback* y desarrollo continuo (evaluación formativa), o bien para la valoración de la competencia a través de evaluaciones sumativas breves y espaciadas (evaluación continua) Las evaluaciones preliminares de este enfoque no han evidenciado un impacto en las tasas de aprobados o no aprobados, aunque sí han señalado un incremento en la satisfacción de los alumnos; no obstante, se requiere investigación más rigurosa para corroborar estos resultados 147

Las evaluaciones sumativas, que generalmente se llevan a cabo al final del entrenamiento, se utilizan para determinar si se ha alcanzado el nivel de competencia requerido y suelen servir como base para otorgar certificados de finalización del curso.

Feedback y debriefing en los cursos de soporte vital

El *feedback* y el *debriefing* son elementos esenciales de los cursos de resucitación, ya que ambas estrategias son intervenciones eficaces para promover el aprendizaje. 144,148-151 El *feedback* y el *debriefing* son conceptos relacionados que a veces no se pueden separar fácilmente; sin embargo, estos conceptos sirven para propósitos diferentes y poseen características distintas. Mientras que el *feedback* tiene como objetivo principal proporcionar orientación específica y oportuna para mejoras inmediatas en el rendimiento, el *debriefing* busca facilitar una reflexión y comprensión más profundas para mejorar el desarrollo a largo plazo. Esta sección proporciona principios de *feedback* para cursos de soporte vital y ofrece una justificación para incorporar sesiones de *debriefing* al equipo en la enseñanza de simulaciones de parada cardiaca. 152

Feedback

El *feedback* tiene como objetivo proporcionar información específica sobre el desempeño para ayudar a mejorar acciones futuras, principalmente para fomentar una mejora inmediata. El *feedback* no es una entrada 'unidireccional' por parte del instructor que da el *feedback*, ¹⁵³ sino que también requiere que el receptor tenga la habilidad de comprenderla y aprovecharla. ¹⁵⁴ El *feedback* contemporánea evita reglas ritualísticas como "el elogio y la crítica deben estar equilibrados". ¹⁵³ En lugar de eso, los instructores al dar *feedback* deben desarrollar un interés genuino en la mejora del alumno al ofrecer una perspectiva compartida sobre su desempeño, lo que incluye un ambiente propicio para el aprendizaje con suficiente seguridad psicológica ¹⁵⁵, y ambas partes deben acordar una alianza educativa. ¹⁵⁶ Se ha demostrado que el entrenamiento en tiempo real, como un tipo de *feedback*, mejora la calidad de la RCP y la adherencia a las guías entre los profesionales de la salud, principalmente en un entorno simulado. ¹⁴³

Se han descrito diferentes niveles de *feedback*, ^{148,149} lo que explica sus efectos variables, que van desde negativos (si el *feedback* se ofrece de manera inespecífica y con connotaciones negativas)¹⁵⁷ hasta altamente positivos (si se enfoca en identificar fortalezas y áreas de mejora). El *feedback* que fomenta la autorregulación en los alumnos tiene un impacto positivo significativo en su desarrollo y desempeño. En el nivel de autorregulación, el *feedback* trasciende el simple hecho de indicar si una respuesta es correcta o incorrecta (nivel de tarea) o de sugerir un mejor proceso (nivel de proceso). En cambio, se centra en empoderar al alumno para que supervise su propio aprendizaje, evalúe su propio trabajo y dirija su propio aprendizaje. ¹⁴⁹ Debería ser una conversación explorando el camino individual del alumno para mejorar su rendimiento. Al formular los futuros objetivos de aprendizaje, se incrementa la motivación del alumno para alcanzarlos.

En los cursos de soporte vital, las sesiones de *feedback* deben ser concisas para asegurar que haya tiempo suficiente para enfocarse en los objetivos de aprendizaje fundamentales del curso. Sin embargo, una breve reflexión sobre los principios clave que subyacen al rendimiento efectivo, como las competencias de trabajo en equipo, es esencial. Para lograr la participación de los alumnos, es útil comenzar con los puntos planteados por los participantes, que a menudo surgen durante la sesión de *debriefing* del equipo. No obstante, la perspectiva del instructor sobre el rendimiento es igualmente importante y debe ser abordada. Debido a que la resucitación es un esfuerzo de equipo en lugar de un acto 'heroico' en solitario, todo el grupo debe participar en la identificación de estrategias de mejora. Cualquier pregunta abierta relevante debe ser respondida antes de resumir los puntos clave de aprendizaje.

Debriefing del equipo como parte de la enseñanza de escenarios de parada cardiaca El debriefing como parte del ciclo de aprendizaje de Kolb tiene como objetivo reflexionar y analizar una actividad para entender qué sucedió 158, por qué sucedió y cómo se puede mejorar. 150,159 En comparación con el feedback, el debriefing tiende a ser menos directivo y menos centrado en acciones específicas, 160 ya que el debriefing tiene como objetivo cambiar los modelos mentales de los alumnos para potenciar su desarrollo a largo plazo. 159,160 Los debriefings en entornos clínicos pueden ayudar al equipo de resucitación a enfrentarse a eventos relevantes (por ejemplo, una resucitación estresante en la vida real), o ser utilizados para mantener la calidad (por ejemplo, después de una resucitación de rutina). En la práctica clínica, se ha demostrado que los debriefings del equipo mejoran el pronóstico. 51,161-166 Por esta razón, después de realizar un escenario de entrenamiento de parada cardiaca, los participantes deben practicar la realización de un debriefing breve y conciso en equipo como ejercicio de autorreflexión y fomentar dicho debriefing después de situaciones reales de resucitación. Durante el entrenamiento, el debriefing del equipo puede proporcionar información valiosa a los instructores y servir como punto de partida para la sesión de feedback. El debriefing del equipo después del entrenamiento de parada cardiaca que se lleva a cabo entre los participantes del curso no debe confundirse con el feedback proporcionado posteriormente por los instructores, que se utiliza iniciar la reflexión sobre el desempeño durante el entrenamiento. para

Desarrollo del profesorado

La calidad de la enseñanza impartida por los instructores tiene el mayor impacto en el resultado del aprendizaje. 167 Una revisión sistemática de metaanálisis en educación superior encontró que el desarrollo del profesorado impactó significativamente en el rendimiento de los estudiantes. 168 *La forma* en que se aplica un método tiene más impacto en el aprendizaje que *el método* utilizado. Los instructores más efectivos planifican cuidadosamente sus cursos, establecen objetivos de aprendizaje claros y proporcionan *feedback* relevante y personalizado. 168 Aunque la importancia del desarrollo del profesorado es ampliamente reconocida e implementada en los planes de estudio de los instructores, la evidencia de qué métodos educativos y planes de estudio son efectivos es limitada, especialmente en la formación en resucitación.

Los programas de desarrollo docente pueden ser evaluados por el impacto en los instructores que han recibido la formación (por ejemplo, ¿se mejoran las habilidades de enseñanza?), en los alumnos (por ejemplo, ¿aplican y utilizan las habilidades aprendidas?), y en los resultados que los alumnos logran al aplicar las competencias aprendidas en su práctica clínica (por ejemplo, ¿el desarrollo docente está impactando en el pronóstico de los pacientes?).

La mayoría de los estudios sobre el desarrollo del profesorado provienen de otras áreas de la educación médica y proporcionan evidencia indirecta para la resucitación. Los pocos estudios comparativos que exploraron si los instructores que han recibido formación conseguían mejores resultados de aprendizaje, fueron resumidos en una revisión de alcance del ILCOR4 y actualizados en 2025. Esta actualización reciente identificó dos estudios que indican que los cursos de instructores con menor tiempo presencial fueron tan efectivos como los cursos tradicionales.

Dos estudios adicionales demostraron que formar a los instructores para reconocer y corregir errores comunes de los alumnos resultó en un mejor desempeño en SVB. 173,174 Esto sugiere que los programas de desarrollo docente deberían centrarse en estrategias para identificar y abordar errores comunes.

Se necesita una formación estructurada de alto impacto para los instructores con el objetivo de mejorar los resultados de los alumnos, ya que se ha observado variaciones en la calidad de los instructores y deficiencias en la impartición del contenido en los cursos de SVB¹⁷⁵⁻¹⁷⁸, o bien se ha reportado escasa diferencia entre estudiantes instruidos por instructores capacitados y no capacitados."¹⁷⁹

Tres aspectos del desarrollo del profesorado son importantes: la selección de instructores adecuados, la formación inicial de los instructores y el mantenimiento y actualización regular de la calidad de su enseñanza.

Selección de instructores

Se deben reclutar instructores con diversos perfiles y áreas de experiencia para impartir formación en resucitación dirigida a diferentes grupos de alumnos. Algunos de estos alumnos, especialmente en las sesiones de entrenamiento de SVB, podrían no tener antecedentes profesionales en el ámbito de la salud (por ejemplo, maestros de escuela, socorristas, voluntarios de organizaciones de primeros auxilios o de entidades benéficas, etc.). Según una revisión sistemática, los maestros, tutores y estudiantes de medicina alcanzaron resultados educativos comparables a los de los profesionales sanitarios en la enseñanza de resucitación dirigida a niños en edad escolar. ³⁰ La formación impartida por docentes que no son profesionales de la salud dirigida a escolares es una alternativa viable, ya que puede integrarse de manera fluida y rentable en los planes de estudio escolares. ^{17,30,180} Las habilidades básicas de soporte vital pueden aprenderse de personas comprometidas que pueden enseñar estas competencias con entusiasmo aunque no sean expertos en el contenido. Sin embargo, los profesionales de la salud deberían ser incluidos en los programas de formación para instructores de SVB que enseñan a escolares o legos.

Es importante incluir un nivel adecuado de conocimiento para explicar los detalles y la evidencia detrás de las competencias de RCP enseñadas, evitando al mismo tiempo sobrecargar la capacidad cognitiva de los alumnos. Los futuros instructores deben ser conscientes de su papel como modelos a seguir y valorar las habilidades efectivas de aprendizaje y motivación. La enseñanza debe ayudar a los alumnos a comprender cuándo y cómo aplicar lo que han aprendido, y cómo sus acciones pueden influir en el pronóstico de los pacientes. Dado que los recursos destinados a la formación de docentes son limitados, resulta fundamental elegir a personas que muestren actitudes colaborativas, motivación intrínseca, competencias comunicativas apropiadas y entusiasmo por la enseñanza de la resucitación."

Entrenamiento de instructores

El desarrollo del profesorado en forma de seminarios, talleres, series de sesiones de enseñanza y becas es efectivo. 181 Los formatos de aprendizaje práctico, cuando se combinan con *feedback* constructivo, 153,182 se conocen como aprendizaje experiencial y pueden ser efectivos. 183-186 el entrenamiento de instructores debe abarcar todos los métodos de enseñanza aplicados en los cursos que los instructores impartirán, incluyendo la enseñanza de habilidades prácticas de RCP,

la facilitación del aprendizaje interactivo en grupos pequeños y las habilidades básicas de presentación. Los futuros instructores necesitan saber cómo establecer entornos de enseñanza y aprendizaje basados en competencias, cómo proporcionar *feedback* constructivo y correctivo, y cómo realizar evaluaciones válidas para guiar el aprendizaje futuro. Deben enseñar cómo mejorar el factor humano, las habilidades no técnicas, las competencias del equipo interprofesional^{7,107} y cómo utilizar dispositivos de *feedback* durante el entrenamiento de resucitación.^{73 51}

Muchos instructores de SVB, a menudo no profesionales de la salud, están obligados a enseñar a grupos de población más grandes. Sus programas de enseñanza deben incluir cómo demostrar y realizar habilidades de RCP de gran calidad, cómo proporcionar *feedback* inmediato sobre el desempeño de las habilidades, cómo responder preguntas adecuadamente y cómo utilizar listados de verificación para la evaluación. Su enseñanza efectiva puede incrementar la autoeficacia de los alumnos y su motivación para intervenir de manera con rapidez en una emergencia. Antes de impartir cursos, se necesita una evaluación de las competencias del instructor. Esto debería ocurrir cuando los futuros instructores enseñen cursos bajo supervisión con soporte y *feedback* inmediato de sus compañeros.

Mantenimiento de las competencias

Mantener las competencias es esencial para que los instructores, directores de cursos y educadores se mantengan al día con los avances en la ciencia de la resucitación y la educación. Este es el ámbito del desarrollo profesional continuo y autodirigido para evitar que los docentes 'lo hagan a su manera'. Las estrategias propuestas disponibles son la práctica reflexiva deliberada, el entrenamiento entre pares y el establecimiento de comunidades de práctica. Sin embargo, se desconoce cómo podrían mantenerse mejor las competencias educativas a lo largo del tiempo. La práctica reflexiva deliberada describe la autorreflexión sobre el propio desempeño para mejorar aún más el rendimiento, incluyendo la autoevaluación 189,190 y la actuación como un modelo a seguir. 188191

El entrenamiento entre pares ofrece una valiosa perspectiva externa, fomenta el aprendizaje mutuo entre colegas y fortalece las comunidades de práctica. 192,193 Esto se puede realizar dentro de equipos de instructores durante cualquier formato de curso. Requiere confianza mutua entre los instructores y podría ser el primer paso hacia el desarrollo de comunidades de práctica.

Las comunidades de práctica influyen en la práctica educativa al compartir objetivos y perspectivas sobre la enseñanza, así como materiales didácticos, promoviendo el aprendizaje colaborativo entre pares y facilitando la difusión más rápida de información mediante un soporte

organizacional efectivo.¹⁹⁴ Un ejemplo de tal soporte es el entorno de aprendizaje virtual ERC CoSy, con formatos virtuales basados en la web para la interacción, seminarios web y redes, o los días de formación para los educadores.

Efecto de la educación en resucitación sobre el pronóstico

El ERC tiene una larga historia de ofrecer formación acreditada en soporte vital para profesionales sanitarios, cubriendo la resucitación básica y avanzada de pacientes neonatales, pediátricos y adultos. La asistencia de los participantes a los cursos de soporte vital conlleva un gasto económico y de tiempo tanto para los individuos como para sus instituciones. Por lo tanto, es importante demostrar si esta participación tiene un impacto significativo en el pronóstico de los pacientes. Las revisiones sistemáticas, incluidas las actualizaciones recientes, mostraron una mejor supervivencia de los pacientes de todos los grupos de edad si los profesionales de la salud asistían a cursos acreditados de soporte vital avanzado. 1,6,48,195

La evidencia es mucho más concluyente en cuanto al impacto del entrenamiento en resucitación neonatal en hospitales. ¹⁹⁶ En general, el entrenamiento en resucitación neonatal mejoró significativamente el pronóstico de los pacientes, incluyendo el riesgo de mortalidad fetal, mortalidad neonatal y mortalidad perinatal, excepto en la mortalidad neonatal a los 28 días en entornos con recursos limitados. *Helping Babies Breathe* (HBB) es un curso de entrenamiento basado en simulación, sencillo y de bajo coste, diseñado para entrenar a los profesionales de la salud en la resucitación neonatal inmediata en entornos con recursos limitados. Una revisión sistemática mostró un riesgo reducido de mortinatalidad relacionada con el intraparto y mortalidad neonatal al primer día después de la implementación de el entrenamiento HBB ¹⁹⁷, y una búsqueda actualizada de literatura incluyó un estudio adicional que informaba que la implementación de el entrenamiento HBB se asociaba con una reducción significativa de la mortalidad perinatal. ¹⁹⁸

Se recomienda la realización de entrenamiento acreditada en soporte vital avanzado para adultos y en resucitación neonatal para los profesionales de la salud. También se recomienda el entrenamiento en *Helping Babies Breathe* (HBB) para los profesionales de la salud en entornos con recursos limitados fuera del hospital. En ausencia de daño demostrable, es razonable recomendar cursos similares acreditados de soporte vital, por ejemplo, soporte vital pediátrico, a pesar de la falta de evidencia sobre su impacto en el pronóstico de los pacientes.⁵¹

Educación en resucitación en entornos con recursos limitados y áreas remotas.

La educación en resucitación en entornos con recursos limitados será más efectiva cuando sea relevante para el contexto de los alumnos. Revisiones recientes de países con recursos limitados destacan que los esfuerzos educativos deben ser conscientes de factores como las opiniones y normas culturales sobre la muerte 199-203, los niveles existentes de conocimiento de primeros auxilios en la comunidad, los niveles de entrenamiento de los profesionales de la salud que atienden paradas cardiacas fuera y dentro del hospital, y la disponibilidad de recursos 199-202. 204 El contexto puede variar ampliamente, incluso dentro de los países 202,205, y se aconseja un enfoque adaptativo hacia los recursos disponibles. 206

Cuatro componentes de la educación destacados en este contexto son: aumentar la conciencia general sobre la resucitación; educación en soporte vital básico (SVB) para personas no especializadas; programas de primeros respondientes comunitarios, y programas de enseñanza de resucitación para escolares.²⁰⁶ Los métodos de aprendizaje a distancia, virtual, híbrido y combinado⁵⁰ ofrecen oportunidades para educar en estas áreas con costes relativamente bajos, aunque el contenido requerirá adaptación al contexto local. Los chatbots de inteligencia artificial podrían ayudar a traducir el material de enseñanza de resucitación y proporcionar soporte para una difusión más amplia, aunque la evidencia sugiere que aún no son lo suficientemente fiables.²⁰⁷ Las mnemotecnias²¹ y los maniquíes de bajo coste²⁰⁸ pueden ser particularmente útiles en entornos con recursos limitados. Idealmente, el entrenamiento debería ofrecerse sin coste a los participantes.²⁰⁹ La evidencia sobre la efectividad de la educación en resucitación en entornos con recursos limitados es limitada. Ejemplos útiles para futuras intervenciones son:

Educación a la comunidad (legos, primeros intervinientes y niños)

Una revisión de alcance reciente identificó 55 intervenciones destinadas a mejorar la respuesta comunitaria ante una parada cardíaca fuera del hospital (OHCA) en entornos con recursos limitados.²¹⁰ En los países de ingresos bajos o medio-bajos, solo se ha evaluado el entrenamiento en RCP y DEA (realizada a través de diversas modalidades). La mayoría de los estudios demostraron que el entrenamiento en resucitación aumentó el conocimiento a corto plazo, y algunos mostraron un aumento en las habilidades de RCP. Esto podría afectar a la atención posterior a los pacientes en parada cardiaca, pero no hay datos disponibles sobre el pronóstico.

Educando al personal sanitario en todo el mundo

El programa *Helping Babies Breathe* (Ayudando a los bebés a respirar) es un ejemplo de contenido adaptado a las causas de muerte neonatal en paises con recursos limitados, que mejoró el pronóstico para los bebés. ^{49,197,211} La iniciativa de entrenamiento en atención a las emergencias básicas de la Organización Mundial de la Salud aumentó la confianza en los proveedores de primera línea con contenido y lenguaje percibidos como adecuadamente adaptados al contexto local, ^{212,213} aunque no se dispone de datos sobre el pronóstico de los pacientes.

Varios países destacan la inversión y los años necesarios para formar especialistas en medicina de urgencias que luego puedan capacitar al personal de los servicios de urgencias médicas. 200,201 The Global Resuscitation Alliance recomienda un enfoque escalonado para fortalecer los sistemas en entornos con recursos limitados, lo cual es coherente con la declaración de consenso del ILCOR. 206 Éste recomienda que la educación se adapte a cada nivel de desarrollo, como la educación de la población en paralelo a la introducción de un sistema de atención médica de urgencias, o la familiarización con desfibriladores de acceso público antes o simultáneamente a su instalación en la comunidad Las organizaciones de resucitación que ofrecen oportunidades educativas o de investigación a profesionales en las primeras etapas de su carrera profesional deben garantizar un acceso equitativo a aquellos provenientes de entornos con recursos limitados. 213

Se reconoce que la mayoría de las recomendaciones hechas en esta guía educativa se han derivado de estudios en entornos con altos recursos. La evidencia sobre su efectividad o aplicabilidad en entornos con recursos limitados es escasa.²¹⁴

Áreas remotas

el entrenamiento en resucitación a distancia emplea tecnologías como la videoconferencia, telemedicina y aplicaciones para teléfonos inteligentes, para ofrecer formación en habilidades que pueden salvar vidas a personas con acceso limitado a los programas educativos presenciales tradicionales. Se ha descrito que el entrenamiento en resucitación pediátrica remota basada en simulación es efectivo. ^{215,216} Una investigación relevante sobre el entrenamiento en resucitación neonatal a distancia comparó métodos de entrenamiento en remoto frente a presenciales, ²¹⁷ investigó la utilidad de las tecnologías digitales y los teléfonos inteligentes ²¹⁸, y la telesimulación ²¹⁹⁻²²¹ a lo largo del tiempo. Los estudios mostraron no inferioridad en comparación con el entrenamiento estándar o que las habilidades en resucitación neonatal mejoraron. Una revisión relevante reciente concluye que los métodos digitales de bajo costo,

como aplicaciones móviles, juegos de simulación y/o tutorización móvil, involucran a los profesionales de la salud en el aprendizaje de habilidades y mejoran la resucitación neonatal con DEA.²²² El tele-entrenamiento remoto mejoró el rendimiento.²²³ El *feedback* virtual, el análisis y la evaluación de habilidades a través de tecnologías de videoconferencia se utilizaron con éxito²²⁴⁻²²⁹ y existe la formación virtual de instructores.¹⁷²

Colaboradores

Contribuyeron como colaboradores a la versión 2025 de esta guía, Patricia Conaghan y Kevin Mackie.

Agradecimientos

Nos gustaría agradecer a Lucas Pflanzl-Knizacek por su apoyo inicial en el desarrollo de esta guía educativa, y a Bhanu Pratab (IFRC) por su apoyo general al grupo de redacción. ChatGPT4 y Gemini se utilizaron para la edición de los idiomas. Nos gustaría agradecer a Patricia Conaghan y Andrew Lockey, ambos hablantes nativos de inglés, la revisión del manuscrito original en inglés.

Autores

^aDepartment of Anesthesiology and Pain Management, Sinai Health System, University of Toronto, Toronto, Canada b Department of Pediatric Intensive Care, University Medical Centre Utrecht, Utrecht, the Netherlands ^c Faculty of Education Sciences and CLINURSID Research Group, Universidade de Santiago de Compostela, Santiago de Compostela, Spain d Simulation and Intensive Care Unit of Santiago (SICRUS) Research Group, Health Research Institute of Santiago, University Hospital of Santiago de Compostela-CHUS, Santiago de Compostela, Spain. eInstitute of Anesthesiology and Perioperative Medicine, University Hospital Zurich, Faculty of Medicine, University of Zurich, Zurich, Switzerland ^fEmergency Department, Habib Bourquiba University Hospital, Faculty of Medicine, Sfax University, Tunisia ⁹Tunisian Resuscitation Council, Tunisia hCentre for Healthcare & Community Research, Faculty of Health Sciences and Sport, University of Stirling, Stirling, UK Croatian Resuscitation Council, Croatian Medical Association, Zagreb, Croatia Department of Anesthesiology, University Medical Centre, Johannes-Gutenberg University, Mainz, Germany ^k Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria ^lEmergency Medical Service Vienna, Vienna, Austria mPULS - Austrian Cardiac Arrest Awareness Association, Viena, Austria ⁿ Warwick Medical School, University of Warwick, UK; ^OUniversity Hospitals Birmingham NHS Foundation Trust, Reino Unido P Emergency Department, Calderdale & Huddersfield NHS Trust, Halifax, UK ^qSchool of Human and Health Sciences, University of Huddersfield, UK ^rFaculty of Medicine, University of Bern, Switzerland;

Referencias

- 1. Greif R, Lockey A, Breckwoldt J, et al. European Resuscitation Council Guidelines 2021: Education for resuscitation. Resuscitation 2021;161:388-407. DOI: 10.1016/j.resuscitation.2021.02.016.
- 2. Lockey A, Conaghan P, Bland A, Astin F. Educational theory and its application to advanced life support courses: a narrative review. Resusc Plus 2021;5:100053. (In eng). DOI: 10.1016/j.resplu.2020.100053.
- 3. Greif R. Education, Implementation, and Teams 2025 International Consensus on Cardiopulmonary Resuscitation and Emergency

Cardiovascular Care Science With Treatment Recommendations 2025.

- 4. Wyckoff MH, Greif R, Morley PT, et al. 2022 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations: Summary From the Basic Life Support; Advanced Life Support; Pediatric Life Support; Neonatal Life Support; Education, Implementation, and Teams; and First Aid Task Forces. Resuscitation 2022;181:208-288. DOI: 10.1016/j.resuscitation.2022.10.005.
- 5. Wyckoff MH, Singletary EM, Soar J, et al. 2021 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations: Summary From the Basic Life Support; Advanced Life Support; Neonatal Life Support; Education, Implementation, and Teams; First Aid Task Forces; and the COVID-19 Working Group. Circulation 2022;145(9):e645-e721. DOI: 10.1161/CIR.000000000001017.
- 6. Berg KM, Bray JE, Ng K-C, et al. 2023 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations: Summary From the Basic Life Support; Advanced Life Support; Pediatric Life Support; Neonatal Life Support; Education, Implementation, and Teams; and First Aid Task Forces. Resuscitation 2024;195. DOI: 10.1016/j.resuscitation.2023.109992.
- 7. Greif R, Bray JE, Djärv T, et al. 2024 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations: Summary From the Basic Life Support; Advanced Life Support; Pediatric Life Support; Neonatal Life Support; Education, Implementation, and Teams; and First Aid Task Forces. Resuscitation 2024;205:110414. (In eng). DOI: 10.1016/j.resuscitation.2024.110414.
- 8. Greif RL, K. G.; Djärv, T.; Ek, J. E.; Monnelly, V.; Monsieurs, K. G.; Nikolaou, N.; Olasveengen, T. M.; Semeraro, F.; Spartinou, A.; Yeung, J.; Baldi, E.; Biarent, D.; Djakow, J.; van Gils, M.; van Goor, S.; Gräsner, J-T.; Hogeveen, M.; Karageorgos, V.; Lott, C.; Madar, J.; Nabecker, S.; de Raad, T.; Raffay, V.; Rogers, J.; Sandroni, C.; Schnaubelt, S.; Smyth, M. A.; Soar, J.; Wittig, J.; Perkins, G. D.; Nolan, J. P.; European Resuscitation Council Guidelines 2025: Executive Summary. Resuscitation 2025.
- 9. Cartledge S, Bray JE, Leary M, Stub D, Finn J. A systematic review of basic life support training targeted to family members of high-risk cardiac patients. Resuscitation 2016;105:70-8. DOI: 10.1016/j.resuscitation.2016.04.028.
- 10. Lafrance M, Recher M, Javaudin F, et al. Bystander basic life support and survival after out-of-hospital cardiac arrest: A propensity score matching analysis. Am J Emerg Med 2023;67:135-143. DOI: 10.1016/j.ajem.2023.02.028.
- 11. Wissenberg M, Lippert FK, Folke F, et al. Association of national initiatives to improve cardiac arrest management with rates of bystander intervention and patient survival after out-of-hospital cardiac arrest. JAMA 2013;310(13):1377-84. DOI: 10.1001/jama.2013.278483.
- 12. Kragholm K, Wissenberg M, Mortensen RN, et al. Bystander Efforts and 1-Year Outcomes in Out-of-Hospital Cardiac Arrest. N Engl J Med 2017;376(18):1737-1747. DOI: 10.1056/NEJMoa1601891.
- 13. Schnaubelt S, Veigl C, Snijders E, et al. Tailored Basic Life Support Training for Specific Layperson Populations-A Scoping Review. J Clin Med 2024;13(14). DOI: 10.3390/jcm13144032.
- 14. Ko YC, Hsieh MJ, Schnaubelt S, Matsuyama T, Cheng A, Greif R. Disparities in layperson resuscitation education: A scoping review. Am J Emerg Med 2023;72:137-146. DOI: 10.1016/j.ajem.2023.07.033.
- 15. Blewer AL, Bigham BL, Kaplan S, Del Rios M, Leary M. Gender, Socioeconomic Status, Race, and Ethnic Disparities in Bystander Cardiopulmonary Resuscitation and Education-A Scoping Review. Healthcare (Basel) 2024;12(4). DOI: 10.3390/healthcare12040456.
- 16. Veigl C, Schnaubelt B, Heider S, et al. Diversity of CPR manikins for basic life support education: Use of manikin sex, race, and body shape A scoping review. medRxiv 2025:2025.02.03.25321593. DOI: 10.1101/2025.02.03.25321593.

17. Schroeder DC, Semeraro F, Greif R, et al. KIDS SAVE LIVES: Basic Life Support Education for Schoolchildren: A Narrative Review and Scientific Statement From the International Liaison Committee on Resuscitation. Resuscitation 2023;188:109772. DOI: 10.1016/j.resuscitation.2023.109772.

Nabecker et al

- 18. Otero-Agra M, Barcala-Furelos R, Besada-Saavedra I, Peixoto-Pino L, Martínez-Isasi S, Rodríguez-Núñez A. Let the kids play: gamification as a CPR training methodology in secondary school students. A quasi-experimental manikin simulation study. Emerg Med J 2019;36(11):653-659. (In eng). DOI: 10.1136/emermed-2018-208108.
- 19. Abelairas-Gómez C, Rodríguez-Núñez A, Casillas-Cabana M, Romo-Pérez V, Barcala-Furelos R. Schoolchildren as life savers: at what age do they become strong enough? Resuscitation 2014;85(6):814-9. (In eng). DOI: 10.1016/j.resuscitation.2014.03.001.
- 20. Jones I, Whitfield R, Colquhoun M, Chamberlain D, Vetter N, Newcombe R. At what age can schoolchildren provide effective chest compressions? An observational study from the Heartstart UK schools training programme. Bmj 2007;334(7605):1201. (In eng). DOI: 10.1136/bmj.39167.459028.DE.
- 21. Fijačko N, Greif R, Metličar Š, et al. A five-finger mnemonic for teaching schoolchildren the theoretical components of adult basic life support: a modified reactive Delphi-guided development and memorability pilot test with schoolchildren. BMC Medical Education 2024;24(1):1554.
- 22. Fijačko N, Tomšič N, Metličar Š, Greif R. Teaching schoolchildren recalling the emergency number with easy cognitive aids A pilot study. Resuscitation 2024;203:110369. (In eng). DOI: 10.1016/j.resuscitation.2024.110369.
- 23. Baldi E, Savastano S, Contri E, et al. Mandatory cardiopulmonary resuscitation competencies for undergraduate healthcare students in Europe: A European Resuscitation Council guidance note. Eur J Anaesthesiol 2020;37(10):839-841. (In eng). DOI: 10.1097/eja.000000000001272.
- 24. Andreotti C, Kolbe M, Capon-Sieber V, Spahn DR, Breckwoldt J. Kids Save Lives The kids' and teachers' view: How school children and schoolteachers would alter a BLS course designed by specialists. Resuscitation Plus 2024;19:100731. DOI: https://doi.org/10.1016/j.resplu.2024.100731.
- 25. Abelairas-Gómez C, Carballo-Fazanes A, Martínez-Isasi S, López-García S, Rico-Díaz J, Rodríguez-Núñez A. [Knowledge and attitudes on first aid and basic life support of Primary and Preschool teachers and parents]. An Pediatr (Engl Ed) 2020;92(5):268-276. (In spa). DOI: 10.1016/j.anpedi.2019.10.010.
- 26. Abelairas-Gómez C, López-García S, Martínez-Isasi S, Carballo-Fazanes A, Rodríguez-Núñez A. [Basic life support knowledge of the future of the Infant and Primary School teacher. An unresolved problem in university study plans?]. An Pediatr (Engl Ed) 2019;91(5):344-345. (In spa). DOI: 10.1016/j.anpedi.2018.10.010.
- 27. Süss-Havemann C, Kosan J, Seibold T, et al. Implementation of Basic Life Support training in schools: a randomised controlled trial evaluating self-regulated learning as alternative training concept. BMC Public Health 2020;20(1):50. (In eng). DOI: 10.1186/s12889-020-8161-7.
- 28. Breckwoldt J, Beetz D, Schnitzer L, Waskow C, Arntz HR, Weimann J. Medical students teaching basic life support to school children as a required element of medical education: a randomised controlled study comparing three different approaches to fifth year medical training in emergency medicine. Resuscitation 2007;74(1):158-65. (In eng). DOI: 10.1016/j.resuscitation.2006.11.017.
- 29. Beck S, Meier-Klages V, Michaelis M, et al. Teaching school children basic life support improves teaching and basic life support skills of medical students: A randomised, controlled trial. Resuscitation 2016;108:1-7. (In eng). DOI: 10.1016/j.resuscitation.2016.08.020.
- 30. Mollo A, Beck S, Degel A, Greif R, Breckwoldt J. Kids save lives: Who should train schoolchildren in resuscitation? A systematic review. Resusc Plus 2024;20:100755. (In eng). DOI: 10.1016/j.resplu.2024.100755.
- 31. Semeraro FS, S.; Olasveengen, T. M.; Bignami, E. G.; Böttiger, B. W.; Fijačko, N.; Gamberini, L.; Hansen, C. M.; Lockey, A.; Metelmann, B.; Metelmann, C.; Ristagno, G.; van Schuppen, H.; Thilakasiri, K.; Monsieurs, K. G.; . European Resuscitation Council Guidelines 2025: Systems Saving Lives. 2025.
- 32. Dami F, Heymann E, Pasquier M, Fuchs V, Carron PN, Hugli O. Time to identify cardiac arrest and provide dispatch-assisted cardio-pulmonary resuscitation in a criteria-based dispatch system. Resuscitation 2015;97:27-33. DOI: 10.1016/j.resuscitation.2015.09.390.
- 33. Lewis M, Stubbs BA, Eisenberg MS. Dispatcher-assisted cardiopulmonary resuscitation: time to identify cardiac arrest and deliver chest compression instructions. Circulation 2013;128(14):1522-30. DOI: 10.1161/CIRCULATIONAHA.113.002627.
- 34. Vaillancourt C, Charette M, Kasaboski A, et al. Cardiac arrest diagnostic accuracy of 9-1-1 dispatchers: a prospective multi-center study. Resuscitation 2015;90:116-20. DOI: 10.1016/j.resuscitation.2015.02.027.

- 35. Williamson F, Heng PJ, Okubo M, et al. Does delivering chest compressions to patients who are not in cardiac arrest cause unintentional injury? A systematic review. Resusc Plus 2024;20:100828. DOI: 10.1016/j.resplu.2024.100828.
- 36. Ng JYX, Sim ZJ, Siddiqui FJ, et al. Incidence, characteristics and complications of dispatcher-assisted cardiopulmonary resuscitation initiated in patients not in cardiac arrest. Resuscitation 2022;170:266-273. DOI: 10.1016/j.resuscitation.2021.09.022.
- 37. Riou M, Ball S, Williams TA, et al. 'She's sort of breathing': What linguistic factors determine call-taker recognition of agonal breathing in emergency calls for cardiac arrest? Resuscitation 2018;122:92-98. DOI: https://doi.org/10.1016/j.resuscitation.2017.11.058.
- 38. Clegg GR, Lyon RM, James S, Branigan HP, Bard EG, Egan GJ. Dispatch-assisted CPR: where are the hold-ups during calls to emergency dispatchers? A preliminary analysis of caller-dispatcher interactions during out-of-hospital cardiac arrest using a novel call transcription technique. Resuscitation 2014;85(1):49-52. DOI: 10.1016/i.resuscitation.2013.08.018.
- 39. Tuffley RH, Folke F, Ersboll AK, Blomberg SNF, Linderoth G. Is dispatcher-assisted cardiopulmonary resuscitation affected by a bystander's emotional stress state in out-of-hospital cardiac arrest? Scand J Trauma Resusc Emerg Med 2023;31(1):82. DOI: 10.1186/s13049-023-01117-6.
- 40. Tanaka Y, Taniguchi J, Wato Y, Yoshida Y, Inaba H. The continuous quality improvement project for telephone-assisted instruction of cardiopulmonary resuscitation increased the incidence of bystander CPR and improved the outcomes of out-of-hospital cardiac arrests. Resuscitation 2012;83(10):1235-41. DOI: 10.1016/j.resuscitation.2012.02.013.
- 41. Richards CT, McCarthy DM, Markul E, et al. A mixed methods analysis of caller-emergency medical dispatcher communication during 9-1-1 calls for out-of-hospital cardiac arrest. Patient Educ Couns 2022;105(7):2130-2136. DOI: 10.1016/i.pec.2022.03.004.
- 42. Hardeland C, Skare C, Kramer-Johansen J, et al. Targeted simulation and education to improve cardiac arrest recognition and telephone assisted CPR in an emergency medical communication centre. Resuscitation 2017;114:21-26. DOI: 10.1016/j.resuscitation.2017.02.013.
- 43. Meischke H, Painter IS, Stangenes SR, et al. Simulation training to improve 9-1-1 dispatcher identification of cardiac arrest: A randomized controlled trial. Resuscitation 2017;119:21-26. DOI: 10.1016/j.resuscitation.2017.07.025.
- 44. Beck S, Phillipps M, Degel A, Mochmann HC, Breckwoldt J. Exploring cardiac arrest in 'at-home' settings: Concepts derived from a qualitative interview study with layperson bystanders. Resuscitation 2024;194:110076. DOI: 10.1016/j.resuscitation.2023.110076.
- 45. Lapostolle F, Agostinucci JM, Petrovic T, Feral-Pierssens AL. Cardiac Arrest: Can Technology Be the Solution? J Clin Med 2025;14(3). DOI: 10.3390/jcm14030972.
- 46. Birkun A. Performance of an artificial intelligence-based chatbot when acting as EMS dispatcher in a cardiac arrest scenario. Intern Emerg Med 2023;18(8):2449-2452. DOI: 10.1007/s11739-023-03399-1.
- 47. Dainty KN, Debaty G, Waddick J, et al. Interventions to optimize dispatcher-assisted CPR instructions: A scoping review. Resusc Plus 2024;19:100715. (In eng). DOI: 10.1016/j.resplu.2024.100715.
- 48. Lockey A, Lin Y, Cheng A. Impact of adult advanced cardiac life support course participation on patient outcomes-A systematic review and meta-analysis. Resuscitation 2018;129:48-54. DOI: 10.1016/j.resuscitation.2018.05.034.
- 49. Patocka C, Lockey A, Lauridsen KG, Greif R. Impact of accredited advanced life support course participation on in-hospital cardiac arrest patient outcomes: A systematic review. Resusc Plus 2023;14:100389. DOI: 10.1016/j.resplu.2023.100389.
- 50. Elgohary M, Palazzo F, Breckwoldt J, et al. Blended learning for accredited life support courses–A systematic review. Resuscitation plus 2022;10:100240.
- 51. Morley. COSTR methods. Resuscitation2025.
- 52. Donoghue A, Sawyer T, Olaussen A, Greif R, Toft L. Gamified learning for resuscitation education: A systematic review. Resusc Plus 2024;18:100640. DOI: 10.1016/j.resplu.2024.100640.
- 53. Nabecker S, Nation K, Gilfoyle E, et al. Cognitive aids used in simulated resuscitation: A systematic review. Resusc Plus 2024;19:100675. DOI: 10.1016/j.resplu.2024.100675.
- 54. Cheng A, Fijacko N, Lockey A, et al. Use of augmented and virtual reality in resuscitation training: A systematic review. Resusc Plus 2024;18:100643. (In eng). DOI: 10.1016/j.resplu.2024.100643.
- 55. Chong KM, Yang HW, He HC, et al. The Effectiveness of Online-Only Blended Cardiopulmonary Resuscitation Training: Static-Group Comparison Study. J Med Internet Res 2023;25:e42325. (In eng). DOI: 10.2196/42325.

- 56. Hassan EA, Elsaman SEA. The effect of simulation-based flipped classroom on acquisition of cardiopulmonary resuscitation skills: A simulation-based randomized trial. Nurs Crit Care 2023;28(3):344-352. (In eng). DOI: 10.1111/nicc.12816.
- 57. Marcus M, Abdullah AA, Nor J, Tuan Kamauzaman TH, Pang NTP. Comparing the effectiveness of a group-directed video instruction versus instructor-led traditional classroom instruction for learning cardiopulmonary resuscitation skills among first-year medical students: A prospective randomized controlled study. GMS J Med Educ 2022;39(4):Doc45. (In eng). DOI: 10.3205/zma001566.
- 58. Ghoman SK, Patel SD, Cutumisu M, et al. Serious games, a game changer in teaching neonatal resuscitation? A review. Arch Dis Child Fetal Neonatal Ed 2020;105(1):98-107. DOI: 10.1136/archdischild-2019-317011.
- 59. Fijačko N, Masterson Creber R, Metličar Š, et al. Effects of a Serious Smartphone Game on Nursing Students' Theoretical Knowledge and Practical Skills in Adult Basic Life Support: Randomized Wait List-Controlled Trial. JMIR Serious Games 2024;12:e56037. (In eng). DOI: 10.2196/56037.
- 60. Bilodeau C, Schmölzer GM, Cutumisu M. A Randomized Controlled Simulation Trial of a Neonatal Resuscitation Digital Game Simulator for Labour and Delivery Room Staff. Children (Basel) 2024;11(7) (In eng). DOI: 10.3390/children11070793.
- 61. Cutumisu M, Schmölzer GM. The Effects of a Digital Game Simulator versus a Traditional Intervention on Paramedics' Neonatal Resuscitation Performance. Children (Basel) 2024;11(2) (In eng). DOI: 10.3390/children11020174.
- 62. Khaledi A, Ghafouri R, Anboohi SZ, Nasiri M, Ta'atizadeh M. Comparison of gamification and role-playing education on nursing students' cardiopulmonary resuscitation self-efficacy. BMC Med Educ 2024;24(1):231. (In eng). DOI: 10.1186/s12909-024-05230-7.
- 63. Kim K, Choi D, Shim H, Lee CA. Effects of gamification in advanced life support training for clinical nurses: A cluster randomized controlled trial. Nurse Educ Today 2024;140:106263. (In eng). DOI: 10.1016/j.nedt.2024.106263.
- 64. Rodríguez-García A, Ruiz-García G, Navarro-Patón R, Mecías-Calvo M. Attitudes and Skills in Basic Life Support after Two Types of Training: Traditional vs. Gamification, of Compulsory Secondary Education Students: A Simulation Study. Pediatric Reports 2024;16(3):631-643. (https://www.mdpi.com/2036-7503/16/3/53).
- 65. Aksoy ME, Özkan AE, Kitapcioglu D, Usseli T. Comparing the Outcomes of Virtual Reality-Based Serious Gaming and Lecture-Based Training for Advanced Life Support Training: Randomized Controlled Trial. JMIR Serious Games 2023;11:e46964. (In eng). DOI: 10.2196/46964.
- 66. Alcázar Artero PM, Greif R, Cerón Madrigal JJ, et al. Teaching cardiopulmonary resuscitation using virtual reality: A randomized study. Australas Emerg Care 2024;27(1):57-62. (In eng). DOI: 10.1016/j.auec.2023.08.002.
- 67. Figols Pedrosa M, Barra Perez A, Vidal-Alaball J, Miro-Catalina Q, Forcada Arcarons A. Use of virtual reality compared to the role-playing methodology in basic life support training: a two-arm pilot community-based randomised trial. BMC Med Educ 2023;23(1):50. (In eng). DOI: 10.1186/s12909-023-04029-2.
- 68. Giacomini F QL, Dekel BGS. . Mixed Reality versus Mass or Self-directed Training for Adolescents' Basic Life Support Instruction: A Prospective, Randomized Pilot Study. . The Open Anesthesiology Journal 2023;17(1). DOI: DOI: 10.2174/18743218-v17-230822-2023-20.
- 69. Pérez Rubio MT GOJ, López Guardiola P, et al. Realidad virtual para enseñar reanimación cardiopulmonar en el Grado de Educación Primaria. Estudio comparativo. . RIED-Revista Iberoamericana de Educación a Distancia 2023;26(2):309-325. DOI: DOI: 10.5944/ried.26.2.36232.
- 70. Shatpattananunt B, Petpichetchian W, Pinsuwan S, Chaloempong T, Waraphok S, Wongwatkit C. Development and evaluation of a virtual reality basic life support for undergraduate students in Thailand: a project by Mae Fah Luang University (MFU BLiS VR). BMC Medical Education 2023;23(1):782. DOI: 10.1186/s12909-023-04764-6.
- 71. Sungur H, van Berlo ZMC, Lüwa LM. Enhancing Cardiopulmonary Resuscitation Training with Mixed Reality: Improving Cardiopulmonary Resuscitation Performance and Enjoyment. Cyberpsychol Behav Soc Netw 2024;27(6):379-386. (In eng). DOI: 10.1089/cyber.2023.0411.
- 72. Ohlenburg H, Arnemann P-H, Hessler M, Görlich D, Zarbock A, Friederichs H. Flipped Classroom: Improved team performance during resuscitation training through interactive pre-course content a cluster-randomised controlled study. BMC Medical Education 2024;24(1):459. DOI: 10.1186/s12909-024-05438-7.

- 73. Lin Y, Lockey A, Donoghue A, et al. Use of CPR Feedback Devices in Resuscitation Training: A Systematic Review and meta-analysis of randomized controlled trials. Resuscitation Plus 2025:100939. DOI: https://doi.org/10.1016/j.resplu.2025.100939.
- 74. Ghaderi MS, Malekzadeh J, Mazloum S, Pourghaznein T. Comparison of real-time feedback and debriefing by video recording on basic life support skill in nursing students. BMC Med Educ 2023;23(1):62. (In eng). DOI: 10.1186/s12909-022-03951-1.
- 75. Jiang J, Yan J, Yao D, et al. Comparison of the effects of using feedback devices for training or simulated cardiopulmonary arrest. J Cardiothorac Surg 2024;19(1):159. (In eng). DOI: 10.1186/s13019-024-02669-z.
- 76. Katipoglu B, Madziala MA, Evrin T, et al. How should we teach cardiopulmonary resuscitation? Randomized multi-center study. Cardiol J 2021;28(3):439-445. (In eng). DOI: 10.5603/CJ.a2019.0092.
- 77. Labuschagne MJ, Arbee A, de Klerk C, et al. A comparison of the effectiveness of QCPR and conventional CPR training in final-year medical students at a South African university. Afr J Emerg Med 2022;12(2):106-111. (In eng). DOI: 10.1016/j.afjem.2022.02.001.
- 78. Lee PH, Lai HY, Hsieh TC, Wu WR. Using real-time device-based visual feedback in CPR recertification programs: A prospective randomised controlled study. Nurse Educ Today 2023;124:105755. (In eng). DOI: 10.1016/j.nedt.2023.105755.
- 79. Meng XY, You J, Dai LL, Yin XD, Xu JA, Wang JF. Efficacy of a Simplified Feedback Trainer for High-Quality Chest Compression Training: A Randomized Controlled Simulation Study. Front Public Health 2021;9:675487. (In eng). DOI: 10.3389/fpubh.2021.675487.
- 80. Perretta JS, Duval-Arnould J, Poling S, et al. Best Practices and Theoretical Foundations for Simulation Instruction Using Rapid-Cycle Deliberate Practice. Simul Healthc 2020;15(5):356-362. (In eng). DOI: 10.1097/sih.0000000000000433.
- 81. Coelho LP, Farhat SCL, Severini R, et al. Rapid cycle deliberate practice versus postsimulation debriefing in pediatric cardiopulmonary resuscitation training: a randomized controlled study. Einstein (Sao Paulo) 2024;22:eAO0825. (In eng). DOI: 10.31744/einstein journal/2024AO0825.
- 82. Abelairas-Gómez C, Cortegiani A, Sawyer T, Greif R, Donoghue A. Rapid cycle deliberate practice approach on resuscitation training: A systematic review. Resusc Plus 2024;18:100648. (In eng). DOI: 10.1016/j.resplu.2024.100648.
- 83. Yeung J, Djarv T, Hsieh MJ, et al. Spaced learning versus massed learning in resuscitation A systematic review. Resuscitation 2020;156:61-71. (In eng). DOI: 10.1016/j.resuscitation.2020.08.132.
- 84. Greif R, Bhanji F, Bigham BL, et al. Education, Implementation, and Teams: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation 2020;142(16_suppl_1):S222-s283. (In eng). DOI: 10.1161/cir.00000000000000896.
- 85. Ranjbar F, Sharif-Nia H, Shiri M, Rahmatpour P. The effect of spaced E-Learning on knowledge of basic life support and satisfaction of nursing students: a quasi-experimental study. BMC Med Educ 2024;24(1):537. (In eng). DOI: 10.1186/s12909-024-05533-9.
- 86. Soares RV, Pedrosa R, Sandars J, Cecilio-Fernandes D. The importance of combined use of spacing and testing effects for complex skills training: A quasi-experimental study. Med Teach 2024:1-8. DOI: 10.1080/0142159X.2024.2427735.
- 87. Oermann MH, Krusmark MA, Kardong-Edgren S, Jastrzembski TS, Gluck KA. Personalized Training Schedules for Retention and Sustainment of Cardiopulmonary Resuscitation Skills. Simul Healthc 2022;17(1):e59-e67. (In eng). DOI: 10.1097/sih.000000000000559.
- 88. Lauridsen KG, Lofgren B, Brogaard L, Paltved C, Hvidman L, Krogh K. Cardiopulmonary Resuscitation Training for Healthcare Professionals: A Scoping Review. Simul Healthc 2022;17(3):170-182. DOI: 10.1097/SIH.000000000000000008.
- 89. Breckwoldt J, Cheng A, Lauridsen KG, Lockey A, Yeung J, Greif R. Stepwise approach to skills teaching in resuscitation: A systematic review. Resusc Plus 2023;16:100457. (In eng). DOI: 10.1016/j.resplu.2023.100457.
- 90. Sawyer T, White M, Zaveri P, et al. Learn, see, practice, prove, do, maintain: an evidence-based pedagogical framework for procedural skill training in medicine. Acad Med 2015;90(8):1025-33. (In eng). DOI: 10.1097/acm.00000000000000034.
- 91. Nicholls D, Sweet L, Muller A, Hyett J. Teaching psychomotor skills in the twenty-first century: Revisiting and reviewing instructional approaches through the lens of contemporary literature. Med Teach 2016;38(10):1056-1063. (In eng). DOI: 10.3109/0142159x.2016.1150984.

- 92. Jorge-Soto C, Abelairas-Gómez C, Barcala-Furelos R, et al. Automated external defibrillation skills by naive schoolchildren. Resuscitation 2016;106:37-41. (In eng). DOI: 10.1016/j.resuscitation.2016.06.007.
- 93. Stærk M, Lauridsen KG, Niklassen J, Nielsen RP, Krogh K, Løfgren B. Barriers and facilitators for successful AED usage during in situ simulated in-hospital cardiac arrest. Resusc Plus 2022;10:100257. (In eng). DOI: 10.1016/j.resplu.2022.100257.
- 94. Hansen MV, Løfgren B, Nadkarni VM, Lauridsen KG. Impact of different methods to activate the pediatric mode in automated external defibrillators by laypersons A randomized controlled simulation study. Resusc Plus 2022;10:100223. (In eng). DOI: 10.1016/j.resplu.2022.100223.
- 95. Slabe D, Metelko Ž, Šparovec ED. The impact on users of an unfamiliar AED following a recent training experience: A randomized cross over simulation study. Resusc Plus 2024;20:100758. (In eng). DOI: 10.1016/j.resplu.2024.100758.
- 96. Smyth MAvG, S.; Hansen, C. M.; Fijačko, N.; Masterson, S.; Nakagawa, N. K.; Raffay, V.; Ristagno, G.; Rogers, J.; Scquizzato, T.; Smith, C. M.; Spartinou, A.; Keck, W.; Perkins, G. D.;. European Resuscitation Council Guidelines 2025: Adult Basic Life Support. 2025.
- 97. Abolfotouh MA, Alnasser MA, Berhanu AN, Al-Turaif DA, Alfayez AI. Impact of basic life-support training on the attitudes of health-care workers toward cardiopulmonary resuscitation and defibrillation. BMC Health Serv Res 2017;17(1):674. (In eng). DOI: 10.1186/s12913-017-2621-5.
- 98. Baldi EW, J.; Caputo, M. A.; Haywood, K. L.; Lilja, G.; Masterson, S.; Nehme, Z.; Perkins, G. D.; Rosell-Ortiz, F.; Strömsöe, A.; Tjelmeland, I. B. M.; Graesner, J-T;. European Resuscitation Council Guidelines 2025: Epidemiology in Resuscitation. 2025.
- 99. Farquharson B, Johnston M, O'Brien R, Clegg G. "All sorts of colours of emotions": Ambulance call-handlers' perceptions of the barriers to CPR in out-of-hospital cardiac arrest. Resuscitation Plus 2025;22:100904. DOI: https://doi.org/10.1016/i.resplu.2025.100904.
- 100. Case R, Cartledge S, Siedenburg J, et al. Identifying barriers to the provision of bystander cardiopulmonary resuscitation (CPR) in high-risk regions: A qualitative review of emergency calls. Resuscitation 2018;129:43-47. (In eng). DOI: 10.1016/j.resuscitation.2018.06.001.
- 101. Matsuyama T, Scapigliati A, Pellis T, Greif R, Iwami T. Willingness to perform bystander cardiopulmonary resuscitation: A scoping review. Resusc Plus 2020;4:100043. (In eng). DOI: 10.1016/j.resplu.2020.100043.
- 102. Yu Y, Meng Q, Munot S, Nguyen TN, Redfern J, Chow CK. Assessment of Community Interventions for Bystander Cardiopulmonary Resuscitation in Out-of-Hospital Cardiac Arrest: A Systematic Review and Meta-analysis. JAMA Netw Open 2020;3(7):e209256. (In eng). DOI: 10.1001/jamanetworkopen.2020.9256.
- 103. Scapigliati A, Zace D, Matsuyama T, et al. Community Initiatives to Promote Basic Life Support Implementation-A Scoping Review. J Clin Med 2021;10(24) (In eng). DOI: 10.3390/jcm10245719.
- 104. Lott C, van Goor S, Nikolaou N, Thilakasiri K, Bahtijarević Z. "Get trained. Save lives.": A CPR awareness campaign in football. Resuscitation 2023;193. DOI: 10.1016/j.resuscitation.2023.110013.
- 105. González-Salvado V, Fernández-Méndez F, Barcala-Furelos R, Peña-Gil C, González-Juanatey JR, Rodríguez-Núñez A. Very brief training for laypeople in hands-only cardiopulmonary resuscitation. Effect of real-time feedback. Am J Emerg Med 2016;34(6):993-8. (In eng). DOI: 10.1016/j.ajem.2016.02.047.
- 106. Lee JH, Cho Y, Kang KH, Cho GC, Song KJ, Lee CH. The Effect of the Duration of Basic Life Support Training on the Learners' Cardiopulmonary and Automated External Defibrillator Skills. Biomed Res Int 2016;2016:2420568. (In eng). DOI: 10.1155/2016/2420568.
- 107. Farquharson B, Cortegiani A, Lauridsen KG, et al. Teaching team competencies within resuscitation training: A systematic review. Resusc Plus 2024;19:100687. DOI: 10.1016/j.resplu.2024.100687.
- 108. Hunziker S, Bühlmann C, Tschan F, et al. Brief leadership instructions improve cardiopulmonary resuscitation in a high-fidelity simulation: a randomized controlled trial. Crit Care Med 2010;38(4):1086-91. (In eng). DOI: 10.1097/CCM.0b013e3181cf7383.
- 109. Norris EM, Lockey AS. Human factors in resuscitation teaching. Resuscitation 2012;83(4):423-7. DOI: 10.1016/j.resuscitation.2011.11.001.
- 110. Hughes KM, Benenson RS, Krichten AE, Clancy KD, Ryan JP, Hammond C. A crew resource management program tailored to trauma resuscitation improves team behavior and communication. J Am Coll Surg 2014;219(3):545-51. (In eng). DOI: 10.1016/j.jamcollsurg.2014.03.049.
- 111. Ruangsomboon O, Surabenjawongse U, Jantataeme P, Chawaruechai T, Wangtawesap K, Chakorn T. Association between cardiopulmonary resuscitation audit results with in situ simulation and in-

- hospital cardiac arrest outcomes and key performance indicators. BMC Cardiovasc Disord 2023;23(1):299. (In eng). DOI: 10.1186/s12872-023-03320-w.
- 112. Schipper AE, Sloane CSM, Shimelis LB, Kim RT. Technological innovations in layperson CPR education A scoping review. Resuscitation Plus 2025;23:100924. DOI: https://doi.org/10.1016/j.resplu.2025.100924.
- 113. Trevi R, Chiappinotto S, Palese A, Galazzi A. Virtual Reality for Cardiopulmonary Resuscitation Healthcare Professionals Training: A Systematic Review. J Med Syst 2024;48(1):50. DOI: 10.1007/s10916-024-02063-1.
- 114. Semeraro F, Scapigliati F, Ristagno G, Scapigliati A. Young adults: How much impact does a social media post have on CPR awareness? Resuscitation 2024;205:110420. DOI: 10.1016/j.resuscitation.2024.110420.
- 115. Vinayan G, Harikirishanan D. Empowering Heutagogy for 21st Century Learning. Systematic Literature Review and Meta-Analysis Journal 2021;2:47-52. DOI: 10.54480/slrm.v2i2.17.
- 116. Fijačko N, Metličar Š, Kleesiek J, Egger J, Chang TP. Virtual Reality, Augmented Reality, Augmented Virtuality, or Mixed Reality in cardiopulmonary resuscitation: Which Extended Reality am I using for teaching adult basic life support? Resuscitation 2023;192:109973. (In eng). DOI: 10.1016/j.resuscitation.2023.109973.
- 117. De Raad TC-W, O.; Leslie, B.; Greif, R.; Nabecker, S. Artificial Intelligence in cardiopulmonary resuscitation training a scoping review. Resus Plus2025.
- 118. Ecker H, Adams NB, Schmitz M, Wetsch WA. Feasibility of real-time compression frequency and compression depth assessment in CPR using a "machine-learning" artificial intelligence tool. Resusc Plus 2024;20:100825. DOI: 10.1016/j.resplu.2024.100825.
- 119. Huang H, Yin J, Lv F, Lin Y, Zou J. A study on the impact of open source metaverse immersive teaching method on emergency skills training for medical undergraduate students. BMC Med Educ 2024;24(1):859. (In eng). DOI: 10.1186/s12909-024-05862-9.
- 120. Constable MD, Zhang FX, Conner T, et al. Advancing healthcare practice and education via data sharing: demonstrating the utility of open data by training an artificial intelligence model to assess cardiopulmonary resuscitation skills. Adv Health Sci Educ Theory Pract 2025;30(1):15-35. (In eng). DOI: 10.1007/s10459-024-10369-5.
- 121. Di Mitri D, Schneider J, Specht M, Drachsler H. Detecting Mistakes in CPR Training with Multimodal Data and Neural Networks. Sensors (Basel) 2019;19(14) (In eng). DOI: 10.3390/s19143099.
- 122. Liu Y, Zhong X, Zhai S, et al. Prompt-enhanced hierarchical transformer elevating cardiopulmonary resuscitation instruction via temporal action segmentation. Comput Biol Med 2023;167:107672. (In eng). DOI: 10.1016/j.compbiomed.2023.107672.
- 123. Ko S, Lee Y, Choi M, Choi D, Lee C, Hou J-U. Harnessing optical flow in deep learning framework for cardiopulmonary resuscitation training. Expert Systems with Applications 2023;238:121775. DOI: 10.1016/j.eswa.2023.121775.
- 124. Ruberto AJ, Rodenburg D, Ross K, et al. The future of simulation-based medical education: Adaptive simulation utilizing a deep multitask neural network. AEM Education and Training 2021;5(3):e10605. DOI: https://doi.org/10.1002/aet2.10605.
- 125. Huang LW, Chan YW, Tsan YT, Zhang QX, Chan WC, Yang HH. Implementation of a Smart Teaching and Assessment System for High-Quality Cardiopulmonary Resuscitation. Diagnostics (Basel) 2024;14(10). DOI: 10.3390/diagnostics14100995.
- 126. Scquizzato T, Semeraro F, Swindell P, et al. Testing ChatGPT ability to answer laypeople questions about cardiac arrest and cardiopulmonary resuscitation. Resuscitation 2024;194:110077. DOI: 10.1016/j.resuscitation.2023.110077.
- 127. Scherr R, Halaseh FF, Spina A, Andalib S, Rivera R. ChatGPT Interactive Medical Simulations for Early Clinical Education: Case Study. JMIR Med Educ 2023;9:e49877. DOI: 10.2196/49877.
- 128. Semeraro F, Fijačko N, Gamberini L, Bignami EG, Greif R. The gap between promise and reality: Evaluating new Al's role in CPR education. Resuscitation 2025;208:110540. (In eng). DOI: 10.1016/j.resuscitation.2025.110540.
- 129. Fijačko N, Štiglic G, Topaz M, Greif R. Using OpenAl's Text-to-video Model Sora to Generate Cardiopulmonary Resuscitation Content. Resuscitation 2025;207:110484. (In eng). DOI: 10.1016/j.resuscitation.2024.110484.
- 130. Friederich C, Schulte-Unetrop L, Cenaj D, et al. The Creation of Shared Mental Models in Simulation Training Enhances Quality of Resuscitation: A Randomized Controlled Study. J Med Educ Curric Dev 2025;12:23821205251316749. (In eng). DOI: 10.1177/23821205251316749.

- 131. Mundell WC, Kennedy CC, Szostek JH, Cook DA. Simulation technology for resuscitation training: a systematic review and meta-analysis. Resuscitation 2013;84(9):1174-83. DOI: 10.1016/j.resuscitation.2013.04.016.
- 132. Motola I, Devine LA, Chung HS, Sullivan JE, Issenberg SB. Simulation in healthcare education: a best evidence practical guide. AMEE Guide No. 82. Med Teach 2013;35(10):e1511-30. DOI: 10.3109/0142159X.2013.818632.
- 133. Sollid SJM, Dieckman P, Aase K, Soreide E, Ringsted C, Ostergaard D. Five Topics Health Care Simulation Can Address to Improve Patient Safety: Results From a Consensus Process. J Patient Saf 2019;15(2):111-120. DOI: 10.1097/PTS.0000000000000254.
- 134. Donoghue A, Allan K, Schnaubelt S, et al. Manikin physical realism for resuscitation education: a systematic review. Resuscitation Plus 2025:100940. DOI: https://doi.org/10.1016/j.resplu.2025.100940.
- 135. Cheng A, Lockey A, Bhanji F, Lin Y, Hunt EA, Lang E. The use of high-fidelity manikins for advanced life support training--A systematic review and meta-analysis. Resuscitation 2015;93:142-9. DOI: 10.1016/j.resuscitation.2015.04.004.
- 136. Stellflug SM, Lowe NK. The Effect of High Fidelity Simulators on Knowledge Retention and Skill Self Efficacy in Pediatric Advanced Life Support Courses in a Rural State. J Pediatr Nurs 2018;39:21-26. DOI: 10.1016/j.pedn.2017.12.006.
- 137. Zeng Q, Wang K, Liu WX, et al. Efficacy of high-fidelity simulation in advanced life support training: a systematic review and meta-analysis of randomized controlled trials. BMC Med Educ 2023;23(1):664. DOI: 10.1186/s12909-023-04654-x.
- 138. Martin A, Cross S, Attoe C. The Use of in situ Simulation in Healthcare Education: Current Perspectives. Adv Med Educ Pract 2020;11:893-903. DOI: 10.2147/AMEP.S188258.
- 139. Cortegiani A, Ippolito M, Abelairas-Gómez C, et al. In situ simulation for cardiopulmonary resuscitation training: A systematic review. Resusc Plus 2025;21:100863. (In eng). DOI: 10.1016/j.resplu.2024.100863.
- 140. Knight LJ, Gabhart JM, Earnest KS, Leong KM, Anglemyer A, Franzon D. Improving code team performance and survival outcomes: implementation of pediatric resuscitation team training. Crit Care Med 2014;42(2):243-51. DOI: 10.1097/CCM.0b013e3182a6439d.
- 141. Xu C, Zhang Q, Xue Y, et al. Improved neonatal outcomes by multidisciplinary simulation-a contemporary practice in the demonstration area of China. Front Pediatr 2023;11:1138633. DOI: 10.3389/fped.2023.1138633.
- 142. Hunziker S, Johansson AC, Tschan F, et al. Teamwork and leadership in cardiopulmonary resuscitation. J Am Coll Cardiol 2011;57(24):2381-8. DOI: 10.1016/i.jacc.2011.03.017.
- 143. Lauridsen KG, Bürgstein E, Nabecker S, et al. Cardiopulmonary resuscitation coaching for resuscitation teams: A systematic review. Resusc Plus 2025;21:100868. (In eng). DOI: 10.1016/j.resplu.2025.100868.
- 144. Ćheng A, Eppich W, Grant V, Sherbino J, Zendejas B, Cook DA. Debriefing for technology-enhanced simulation: a systematic review and meta-analysis. Med Educ 2014;48(7):657-66. DOI: 10.1111/medu.12432.
- 145. Lin Y, Lockey A, Greif R, Cheng A. The effect of scripted debriefing in resuscitation training: A scoping review. Resusc Plus 2024;18:100581. (In eng). DOI: 10.1016/j.resplu.2024.100581.
- 146. Cook DA, Hatala R. Validation of educational assessments: a primer for simulation and beyond. Adv Simul (Lond) 2016;1:31. (In eng). DOI: 10.1186/s41077-016-0033-y.
- 147. Scheffers M, de Raad T. 184 "Evaluating Continuous Assessment in Dutch European Pediatric Advanced Life Support Courses". Resuscitation 2024;203:S94-S95. DOI: 10.1016/S0300-9572(24)00492-1.
- 148. Wisniewski B, Zierer K, Hattie J. The Power of Feedback Revisited: A Meta-Analysis of Educational Feedback Research. Front Psychol 2019;10:3087. (In eng). DOI: 10.3389/fpsyg.2019.03087.
- 149. Hattie J, Timperley H. The Power of Feedback. Review of Educational Research 2007;77(1):81-112. DOI: 10.3102/003465430298487.
- 150. Fanning RM, Gaba DM. The role of debriefing in simulation-based learning. Simul Healthc 2007;2(2):115-25. (In eng). DOI: 10.1097/SIH.0b013e3180315539.
- 151. Jossberger H, Breckwoldt J, Gruber H. Promoting Expertise Through Simulation (PETS): A conceptual framework. Learning and Instruction 2022;82:101686. DOI: https://doi.org/10.1016/j.learninstruc.2022.101686.

152. Denning K MK, Charters A, Lockey A. . Managing simulations. In: Denning K MK, Charters A, Lockey A, ed. Pocket Guide to Teaching for Clinical Instructors. 2025;4th edition: John Whiley & Sons; 2025:63-76.

Nabecker et al

- 153. Molloy E, Ajjawi R, Bearman M, Noble C, Rudland J, Ryan A. Challenging feedback myths: Values, learner involvement and promoting effects beyond the immediate task. Med Educ 2020;54(1):33-39. DOI: 10.1111/medu.13802.
- 154. Molloy E, Boud D, Henderson M. Developing a learning-centred framework for feedback literacy. Assessment & Evaluation in Higher Education 2019;45:1-14. DOI: 10.1080/02602938.2019.1667955.
- 155. Edmondson AC, Lei Z. Psychological Safety: The History, Renaissance, and Future of an Interpersonal Construct. Annual Review of Organizational Psychology and Organizational Behavior 2014;1(Volume 1, 2014):23-43. DOI: https://doi.org/10.1146/annurev-orgpsych-031413-091305.
- 156. Telio S, Regehr G, Ajjawi R. Feedback and the educational alliance: examining credibility judgements and their consequences. Med Educ 2016;50(9):933-42. (In eng). DOI: 10.1111/medu.13063.
- 157. Kluger A, DeNisi A. The Effects of Feedback Interventions on Performance: A Historical Review, a Meta-Analysis, and a Preliminary Feedback Intervention Theory. Psychological Bulletin 1996;119:254-284. DOI: 10.1037/0033-2909.119.2.254.
- 158. Kolb D. Experiential Learning. Englewood Cliffs NPH, 1984.
- 159. Dieckmann P, Molin Friis S, Lippert A, Ostergaard D. The art and science of debriefing in simulation: Ideal and practice. Med Teach 2009;31(7):e287-94. (In eng). DOI: 10.1080/01421590902866218.
- 160. Sawyer T, Eppich W, Brett-Fleegler M, Grant V, Cheng A. More Than One Way to Debrief: A Critical Review of Healthcare Simulation Debriefing Methods. Simul Healthc 2016;11(3):209-17. (In eng). DOI: 10.1097/sih.000000000000148.
- 161. Wolfe H, Zebuhr C, Topjian AA, et al. Interdisciplinary ICU cardiac arrest debriefing improves survival outcomes*. Crit Care Med 2014;42(7):1688-95. (In eng). DOI: 10.1097/ccm.000000000000327.
- 162. Bleijenberg E, Koster RW, de Vries H, Beesems SG. The impact of post-resuscitation feedback for paramedics on the quality of cardiopulmonary resuscitation. Resuscitation 2017;110:1-5. DOI: 10.1016/j.resuscitation.2016.08.034.
- 163. Couper K, Kimani PK, Abella BS, et al. The System-Wide Effect of Real-Time Audiovisual Feedback and Postevent Debriefing for In-Hospital Cardiac Arrest: The Cardiopulmonary Resuscitation Quality Improvement Initiative. Crit Care Med 2015;43(11):2321-31. DOI: 10.1097/CCM.00000000001202.
- 164. Couper K, Mason AJ, Gould D, et al. The impact of resuscitation system factors on in-hospital cardiac arrest outcomes across UK hospitals: An observational study. Resuscitation 2020;151:166-172. DOI: 10.1016/j.resuscitation.2020.04.006.
- 165. Malik AO, Nallamothu BK, Trumpower B, et al. Association Between Hospital Debriefing Practices With Adherence to Resuscitation Process Measures and Outcomes for In-Hospital Cardiac Arrest. Circ Cardiovasc Qual Outcomes 2020;13(11):e006695. DOI: 10.1161/CIRCOUTCOMES.120.006695.
- 166. Skare C, Boldingh AM, Kramer-Johansen J, et al. Video performance-debriefings and ventilation-refreshers improve quality of neonatal resuscitation. Resuscitation 2018;132:140-146. DOI: 10.1016/j.resuscitation.2018.07.013.
- 167. Hattie. Visible learning for teachers: Maximizing impact on learning. Routledge.
- 168. Schneider M, Preckel F. Variables associated with achievement in higher education: A systematic review of meta-analyses. Psychol Bull 2017;143(6):565-600. DOI: 10.1037/bul0000098.
- 169. Julian K, Appelle N, O'Sullivan P, Morrison EH, Wamsley M. The impact of an objective structured teaching evaluation on faculty teaching skills. Teach Learn Med 2012;24(1):3-7. DOI: 10.1080/10401334.2012.641476.
- 170. Ko YC, Hsieh MJ, Cheng A, et al. Faculty Development Approaches for Life Support Courses: A Scoping Review. Journal of the American Heart Association 2022;11(11):e025661. DOI: 10.1161/JAHA.122.025661.
- 171. Nabecker S, Balmer Y, van Goor S, Greif R. Piloting a Basic Life Support instructor course: A short report. Resusc Plus 2022;12:100325. DOI: 10.1016/j.resplu.2022.100325.
- 172. Kiyozumi T, Ishigami N, Tatsushima D, Araki Y, Yoshimura Y, Saitoh D. Instructor Development Workshops for Advanced Life Support Training Courses Held in a Fully Virtual Space: Observational Study. JMIR Serious Games 2022;10(2):e38952. DOI: 10.2196/38952.
- 173. Madou T, Depaepe F, Ward P, Iserbyt P. The role of specialised content knowledge in teaching basic life support. Health Education Journal 2023;82(5):555-568. DOI: 10.1177/00178969231174685.

- 174. Iserbyt P, and Madou T. The effect of content knowledge and repeated teaching on teaching and learning basic life support: a cluster randomised controlled trial. Acta Cardiologica 2022;77(7):616-625. DOI: 10.1080/00015385.2021.1969109.
- 175. Parnell MM, Larsen PD. Poor quality teaching in lay person CPR courses. Resuscitation 2007;73(2):271-8. DOI: 10.1016/j.resuscitation.2006.09.008.
- 176. Breckwoldt J, Lingemann C, Wagner P. [Resuscitation training for lay persons in first aid courses: Transfer of knowledge, skills and attitude]. Anaesthesist 2016;65(1):22-29. (In ger). DOI: 10.1007/s00101-015-0113-8.
- 177. Wagner P, Lingemann C, Arntz HR, Breckwoldt J. Official lay basic life support courses in Germany: is delivered content up to date with the guidelines? An observational study. Emerg Med J 2015;32(7):547-52. DOI: 10.1136/emermed-2014-203736.
- 178. Kaye W, Rallis SF, Mancini ME, et al. The problem of poor retention of cardiopulmonary resuscitation skills may lie with the instructor, not the learner or the curriculum. Resuscitation 1991;21(1):67-87. DOI: 10.1016/0300-9572(91)90080-i.
- 179. Breckwoldt J, Svensson J, Lingemann C, Gruber H. Does clinical teacher training always improve teaching effectiveness as opposed to no teacher training? A randomized controlled study. BMC Med Educ 2014;14:6. DOI: 10.1186/1472-6920-14-6.
- 180. Lukas RP, Van Aken H, Molhoff T, et al. Kids save lives: a six-year longitudinal study of schoolchildren learning cardiopulmonary resuscitation: Who should do the teaching and will the effects last? Resuscitation 2016;101:35-40. DOI: 10.1016/j.resuscitation.2016.01.028.
- 181. Steinert Y, Mann K, Anderson B, et al. A systematic review of faculty development initiatives designed to enhance teaching effectiveness: A 10-year update: BEME Guide No. 40. Med Teach 2016;38(8):769-86. (In eng). DOI: 10.1080/0142159x.2016.1181851.
- 182. van de Ridder JM, McGaghie WC, Stokking KM, ten Cate OT. Variables that affect the process and outcome of feedback, relevant for medical training: a meta-review. Med Educ 2015;49(7):658-73. DOI: 10.1111/medu.12744.
- 183. Coles CR, Tomlinson JM. Teaching student-centred educational approaches to general practice teachers. Med Educ 1994;28(3):234-8. DOI: 10.1111/j.1365-2923.1994.tb02704.x.
- 184. Hewson MG. A theory-based faculty development program for clinician-educators. Acad Med 2000;75(5):498-501. DOI: 10.1097/00001888-200005000-00024.
- 185. Sheets KJ, Henry RC. Evaluation of a faculty development program for family physicians. Med Teach 1988;10(1):75-83. DOI: 10.3109/01421598809019328.
- 186. Litzelman DK, Stratos GA, Marriott DJ, Lazaridis EN, Skeff KM. Beneficial and harmful effects of augmented feedback on physicians' clinical-teaching performances. Acad Med 1998;73(3):324-32. DOI: 10.1097/00001888-199803000-00022.
- 187. Ro YS, Shin SD, Song KJ, et al. Public awareness and self-efficacy of cardiopulmonary resuscitation in communities and outcomes of out-of-hospital cardiac arrest: A multi-level analysis. Resuscitation 2016;102:17-24. DOI: 10.1016/j.resuscitation.2016.02.004.
- 188. Ericsson KA. Deliberate practice and the acquisition and maintenance of expert performance in medicine and related domains. Acad Med 2004;79(10 Suppl):S70-81. DOI: 10.1097/00001888-200410001-00022.
- 189. Ward M, Gruppen L, Regehr G. Measuring self-assessment: current state of the art. Adv Health Sci Educ Theory Pract 2002;7(1):63-80. DOI: 10.1023/a:1014585522084.
- 190. Brydges R, Butler D. A reflective analysis of medical education research on self-regulation in learning and practice. Med Educ 2012;46(1):71-9. DOI: 10.1111/j.1365-2923.2011.04100.x.
- 191. Chaffey LJ, de Leeuw EJ, Finnigan GA. Facilitating students' reflective practice in a medical course: literature review. Educ Health (Abingdon) 2012;25(3):198-203. DOI: 10.4103/1357-6283.109787.
- 192. Yee L. Peer Coaching for Improvement of Teaching and Learning.
- 193. Bell AE, Meyer HS, Maggio LA. Getting Better Together: A Website Review of Peer Coaching Initiatives for Medical Educators. Teach Learn Med 2020;32(1):53-60. DOI: 10.1080/10401334.2019.1614448.
- 194. Cruess RL, Cruess SR, Steinert Y. Medicine as a Community of Practice: Implications for Medical Education. Acad Med 2018;93(2):185-191. DOI: 10.1097/ACM.000000000001826.
- 195. Pareek M, Parmar V, Badheka J, Lodh N. Study of the impact of training of registered nurses in cardiopulmonary resuscitation in a tertiary care centre on patient mortality. Indian Journal of Anaesthesia 2018;62(5):381-384. DOI: 10.4103/ija.IJA 17 18.

- 196. Archana P, Mahalaqua Nazli K, Kunal K, Savita B, Akash B. Impact of neonatal resuscitation trainings on neonatal and perinatal mortality: a systematic review and meta-analysis. BMJ Paediatrics Open 2017;1(1):e000183. DOI: 10.1136/bmjpo-2017-000183.
- 197. Versantvoort JMD, Kleinhout MY, Ockhuijsen HDL, Bloemenkamp K, de Vries WB, van den Hoogen A. Helping Babies Breathe and its effects on intrapartum-related stillbirths and neonatal mortality in low-resource settings: a systematic review. Arch Dis Child 2020;105(2):127-133. (In eng). DOI: 10.1136/archdischild-2018-316319.
- 198. Innerdal M, Simaga I, Diall H, et al. Reduction in Perinatal Mortality after Implementation of HBB Training at a District Hospital in Mali. Journal of Tropical Pediatrics 2019;66(3):315-321. DOI: 10.1093/tropej/fmz072.
- 199. van Rensburg L, Majiet N, Geldenhuys A, King LL, Stassen W. A resuscitation systems analysis for South Africa: A narrative review. Resuscitation Plus 2024;18:100655.
- 200. Thilakasiri K, Wijegunawardana P, de Silva S, Fernando S, De Silva SL. "1990 Suwa Seriya" the national pre-hospital care ambulance service of Sri Lanka; a narrative review describing the EMS system with special emphasis on Out of Hospital Cardiac Arrest (OHCA) in Sri Lanka. Resuscitation Plus 2024;19:100649.
- 201. Kabongo D, Issa M, Diango K, Bilomba P, Simbi C, Nsampi A. Evaluation of resuscitation systems in the Democratic Republic of Congo: A narrative review. Resuscitation Plus 2024;18:100656.
- 202. Baig MNA, Khan N, Naseer R, Akhter S, Shaikh AJ, Razzak JA. Pakistan's Emergency Medical Services (EMS) system & out-of-hospital-cardiac-arrest (OHCA): A narrative review of an EMS system of a low middle income country in context of OHCA. Resuscitation Plus 2024;18:100627.
- 203. Appel D, Papaikonomou M. Narratives on death and bereavement from three South African cultures: An exploratory study. Journal of Psychology in Africa 2013;23(3):453-458.
- 204. Diego E, Kamath-Rayne BD, Kukora S, Abayneh M, Rent S. Neonatal Resuscitation and Delivery Room Care: A Changing Global Landscape. NeoReviews 2024;25(9):e551-e566.
- 205. Alsabri MAH, Elsayed SM, Elshanbary AA, et al. Knowledge, Attitude and Perceptions of Healthcare Workers in Arab Countries Regarding Basic Life Support; a Systematic Review and Meta-Analysis. Archives of Academic Emergency Medicine 2024;12(1).
- 206. Schnaubelt S, Garg R, Atiq H, et al. Cardiopulmonary resuscitation in low-resource settings: a statement by the International Liaison Committee on Resuscitation, supported by the AFEM, EUSEM, IFEM, and IFRC. The Lancet Global Health 2023;11(9):e1444-e1453.
- 207. Beck S, Kuhner M, Haar M, Daubmann A, Semmann M, Kluge S. Evaluating the accuracy and reliability of Al chatbots in disseminating the content of current resuscitation guidelines: a comparative analysis between the ERC 2021 guidelines and both ChatGPTs 3.5 and 4. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 2024;32(1):95.
- 208. Nehra A, Ravindra P, Bhat R, et al. Comparison between a low-cost model (CPR Pillow) and a mannequin in training hands only cardiopulmonary resuscitation (CPR): a randomised trial. Resuscitation Plus 2024;17:100518.
- 209. Nadarajan G, Tiah L, Ho A, et al. Global resuscitation alliance utstein recommendations for developing emergency care systems to improve cardiac arrest survival. Resuscitation 2018;132:85-89.
- 210. Grubic N, Hill B, Allan KS, Dainty KN, Johri AM, Brooks SC. Community interventions for out-of-hospital cardiac arrest in resource-limited settings: a scoping review across low, middle, and high-income countries. Prehospital Emergency Care 2023;27(8):1088-1100.
- 211. Niermeyer S, Little GA, Singhal N, Keenan WJ. A short history of helping babies breathe: why and how, then and now. Pediatrics 2020;146(Supplement_2):S101-S111.
- 212. Kivlehan SM, Dixon J, Kalanzi J, et al. Strengthening emergency care knowledge and skills in Uganda and Tanzania with the WHO-ICRC Basic Emergency Care Course. Emergency Medicine Journal 2021;38(8):636-642.
- 213. Wittig J, Kowalski B, Greif R, Perkins GD, Lauridsen KG, Committee YERC. The Young European Resuscitation Council Resuscitation Science Masterclass—Concept and implementation. Resuscitation Plus 2024;17:100545.
- 214. Chanel van Z, Marelise B, Susan H, Martin H. Unravelling â□˜ low-resource settingsâ□□: a systematic scoping review with qualitative content analysis. BMJ Global Health 2021;6(6):e005190. DOI: 10.1136/bmjgh-2021-005190.
- 215. Ohta K, Kurosawa H, Shiima Y, et al. The Effectiveness of Remote Facilitation in Simulation-Based Pediatric Resuscitation Training for Medical Students. Pediatr Emerg Care 2017;33(8):564-569. (In eng). DOI: 10.1097/pec.00000000000000752.

- 216. Stokes ST, Ismail L, Creamer KM. The Use of Remote Learning Techniques for Pediatric Cardiopulmonary Resuscitation Simulation Highlighting the Intersection Between Pediatric Advanced Life Support (PALS) and Advanced Cardiac Life Support (ACLS) Pathways. Cureus 2024;16(12):e74974. (In eng). DOI: 10.7759/cureus.74974.
- 217. Mediratta RP, Clary MK, Liang JW, et al. Remote versus in-person pre-service neonatal resuscitation training: A noninferiority randomized controlled trial in Ethiopia. Resuscitation 2025;209:110556. (In eng). DOI: 10.1016/j.resuscitation.2025.110556.
- 218. Lee SGW, Hong KJ, Lee SY, et al. Efficacy of distance training program for cardiopulmonary resuscitation utilizing smartphone application and home delivery system. Am J Emerg Med 2023;66:67-72. (In eng). DOI: 10.1016/j.ajem.2023.01.026.
- 219. Melendi ME, Zanno A, Holmes J, et al. Development and Evaluation of a Rural Longitudinal NRP® Telesimulation Program (MOOSE: Maine Ongoing Outreach Simulation Education). American journal of perinatology 2024.
- 220. Mileder LP, Bereiter M, Schwaberger B, Wegscheider T. Telesimulation for the Training of Medical Students in Neonatal Resuscitation. Children (Basel) 2023;10(9) (In eng). DOI: 10.3390/children10091502.
- 221. Fang JL, Umoren RA. Telesimulation for neonatal resuscitation training. Semin Perinatol 2023;47(7):151827. (In eng). DOI: 10.1016/j.semperi.2023.151827.
- 222. Horiuchi S, Soller T, Bykersma C, Huang S, Smith R, Vogel JP. Use of digital technologies for staff education and training programmes on newborn resuscitation and complication management: a scoping review. BMJ Paediatr Open 2024;8(1) (In eng). DOI: 10.1136/bmjpo-2023-002105.
- 223. Castera M, Gray MM, Gest C, Motz P, Sawyer T, Umoren R. Telecoaching Improves Positive Pressure Ventilation Performance During Simulated Neonatal Resuscitations. Telemed Rep 2022;3(1):55-61. (In eng). DOI: 10.1089/tmr.2021.0049.
- 224. Cheng A, Kolbe M, Grant V, et al. A practical guide to virtual debriefings: communities of inquiry perspective. Adv Simul (Lond) 2020;5:18. (In eng). DOI: 10.1186/s41077-020-00141-1.
- 225. Odongkara B, Tylleskär T, Pejovic N, et al. Adding video-debriefing to Helping-Babies-Breathe training enhanced retention of neonatal resuscitation knowledge and skills among health workers in Uganda: a cluster randomized trial. Glob Health Action 2020;13(1):1743496. (In eng). DOI: 10.1080/16549716.2020.1743496.
- 226. Mosher CJ, Morton A, Palaganas JC. Perspectives of engagement in distance debriefings. Advances in Simulation 2021;6(1):40. DOI: 10.1186/s41077-021-00192-y.
- 227. Cronin C, Cheang S, Hlynka D, Adair E, Roberts S. Videoconferencing can be used to assess neonatal resuscitation skills. Med Educ 2001;35(11):1013-23. (In eng). DOI: 10.1046/j.1365-2923.2001.01055.x.
- 228. Pennington KM, Dong Y, Coville HH, Wang B, Gajic O, Kelm DJ. Evaluation of TEAM dynamics before and after remote simulation training utilizing CERTAIN platform. Med Educ Online 2018;23(1):1485431. (In eng). DOI: 10.1080/10872981.2018.1485431.
- 229. Curran VR, Aziz K, O'Young S, Bessell C, Schulz H. A comparison of face-to-face versus remote assessment of neonatal resuscitation skills. J Telemed Telecare 2005;11(2):97-102. (In eng). DOI: 10.1258/1357633053499895.